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ABSTRACT
Bed-making is a common chore completed in various living

environments to promote user comfort, hygiene, and well-being.
Unfortunately, the physical and tedious nature of the act makes it
challenging for segments of the elderly community to complete,
and thus the opportunity arises to develop robots to automate the
task. However, despite the opportunity’s importance and posi-
tive impact, there is limited research on developing robotic bed-
making systems. The aim of this research is to start addressing
this gap by proposing methods to accomplish pillow placement,
a major part of the bed-making task. This paper introduces a
pillow placement process to be used by a static 6-DOF (degree
of freedom) one-armed robotic manipulator with a 2-finger grip-
per. The process uses YOLOv4-tiny, image transformations, and
principal component analysis (PCA) to infer pillow poses in a
transformed RGB image, as well as a set of manipulator macro-
actions to move pillows to their goal pose. We evaluated the
proposed methodology in a real-world setting, where it enabled
the robot to place pillows at desired poses on a miniature bed
successfully in 89% of the experimental runs.
Keywords: Household robotics, applied machine learning,
bed-making, pillow placement

1. INTRODUCTION
Chores are essential activities for creating a clean and orga-

nized living environment, which in turn promotes overall health
and safety [1]. In long-term care facilities, caregivers aid the resi-
dents with tasks such as cooking [2], making phone calls [3], and
bed-making [4]. However, the COVID-19 pandemic has made
it challenging for caregivers to provide the required aid to this
especially vulnerable population due to increased responsibilities
and deteriorating mental health [5]. On the other hand, mobile
manipulator robots have the advantage of not being susceptible
to fatigue and diseases, characteristics that can be used to accom-
plish mundane tasks, surmount physical limitations, and alleviate
the burden of chores [6, 7]. In fact, there are studies that sug-
gest that older adults prefer having a robot assistant in cleaning,

FIGURE 1: THE NIRYO ONE ROBOT WAS USED TO DEVELOP AND
EVALUATE THE ROBOTIC PILLOW PLACEMENT PROCESS PRO-
POSED IN THIS PAPER. SUPERIMPOSED ON THE IMAGE ARE AR-
ROWS AND LABELS THAT INDICATE EACH JOINT’S REVOLUTE
MOTIONS.

fetching, and organizing tasks [7, 8]. One of the most physically
demanding chores is bed-making, which involves preparing and
arranging the bed for use. This task requires a certain degree
of technical and practical skills [9, 10]. Specifically, the person
must have the necessary flexibility, balance, coordination, and
grip strength to perform the bending, reaching, and leaning mo-
tions of the task; these motions place physical loads on the body,
increasing the risk of strain and injury [11]. Bed-making is es-
pecially challenging to segments of the elderly community who,
due to their limited physical and cognitive ability, face barriers
in accomplishing this tedious and strenuous task [12]. As the
number of elderly who want to age at home increases [13], the
development of solutions for aiding in chores such as bed-making
is becoming increasingly urgent.

Bed-making is a complex multitask process [14] that includes
rearranging the blanket, removing mattress wrinkles, and placing
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pillows. The list of tasks required to be fulfilled can further
increase depending on user preferences (e.g. number of sheets),
characteristics of the bed setup (e.g. bed placement in the room),
and bed situation (e.g. needing to replace soiled linens). This
research focuses on the pillow placement subtask, which involves
placing pillows at their user-predefined desired pose on the bed,
while addressing challenges in 1) pillow detection due to non-
uniqueness and cluttered nature of an unmade bed, and 2) pillow
manipulation due to the deformable nature of the pillows.

In this paper, we propose a novel process for a 6-DOF static
one-armed robotic manipulator (Fig. 1) to address the challenges
of pillow placement on a small-scale bed. Specifically, our main
contributions are as follows: 1) we are the first to propose a unique
process for robotic pillow placement that involves YOLOv4-tiny,
image transformations, and PCA to estimate pillow position and
orientation in varying bed scenarios, as well as an iterative se-
quence of manipulator pillow-placing macro-actions that are spe-
cially designed to deal with the deformable nature of pillows;
2) to address the challenge of the non-uniqueness and cluttered
nature of bed-making scenarios, we constructed a novel RGB-D
image dataset of diverse bed scenarios with which the YOLOv4-
tiny model was retrained and orientation estimation method was
developed; and 3) we performed real-world testing to evaluate
the feasibility of the proposed approach in terms of percentage of
pillows successfully placed.

2. RELATED WORK
Existing studies that inform the development of a pillow

placement robot fall into 3 main categories: 1) Bed-Making
Robotics [15–19], 2) Environment Understanding [20–25], and
3) Manipulation [26–30].

2.1 Bed-Making Robotics
The robotic bed-making task has been approached using both

classical [15, 16] and learning-based methods [17–19]. Classi-
cal methods typically include using classical computer vision
techniques (e.g. colour segmentation), coordinate transforma-
tions, and augmented grippers, and have been used to surmount
specific challenges such as limited bed-making data availabil-
ity. Namely, in [15], the authors proposed a method where the
robot first chooses a grasping point out of a set of detected Shi-
Tomasi points, then performs blanket spreading until the blanket
is considered to be spread based on wrinkle detection. In another
study [16], rather than relying only on camera data during sheet
spreading, the authors also used sensors attached to their robot’s
specially-designed grippers.

In general, learning-based methods for robotic bed-making
employ deep neural networks to extract features from image data
of the bed scenario (e.g. pillow, blanket configuration) and/or
robot state (e.g. joint angles, end-effector position) [17–19].
More specifically, in [17], two separate neural networks were
jointly trained using imitation learning and were used to perform
blanket spreading. The first network is the grasp policy, which
was used to detect blanket corners; the second network is the
transition policy, which was used to decide at a given time whether
or not to move to the other side of the bed in order to spread the
sheet on that side. The system was able to successfully spread the

sheets over the bed in most cases, even when additional items (e.g.
toys) were present on the surface. This work was extended by [18],
which incorporated depth images into the robot’s perception of
the environment, treated sheet corners as grasp points, and used
a more diverse set of initial sheet states. While [17, 18] explored
the blanket spreading task as a whole, [19] focused on improving
the choice of pick points on the fabric. The authors applied deep
transfer learning to train a neural network to select pick-up points
on which a robot can act to effectively smooth out blankets.

Unfortunately, despite their titles, the above robotic bed-
making studies only focus on sheet spreading, thus, they cannot
be directly applied to solve the pillow placement problem which
has its own set of technical challenges and cannot be neglected
during the development of a bed-making robot.

2.2 Environment Understanding
In order to place the pillows, the robot must be able to gather

position and orientation information about the pillows on the
bed. With the image feed captured from the robot’s perspective,
the robot has two objectives: the first is to locate the pillows by
framing the pillows in the image with bounding boxes; the second
is to estimate the pillow orientation. These two objectives are
jointly referred to in this work as pillow detection and orientation
estimation (pillow DOE).

Although the literature on pillow DOE is non-existent, inspi-
ration can be taken from research on the DOE of other objects.
For example, DOE methods have been used for DOE of objects
(e.g. cars, household objects) from the ground view [20, 21]
and objects (e.g. cars, buildings) from aerial and remote sensing
views [22–25]. For the former, studies have used methods such as
support vector machines [20] and convolutional neural networks
(CNN) [21]. Unfortunately, these studies [20, 21] are limited to
images in which there is only one object of interest and that object
is at the centre of the image. Because pillows are not necessarily
centred on the bed image, nor is there necessarily only one pillow,
these studies are not directly applicable to pillow DOE.

Methods for DOE in aerial and remote sensing applica-
tions [22–25] do not make these assumptions since multiple ob-
jects must be analyzed in those images. For example, building
DOE involves identifying and analyzing buildings in overhead
images. Because buildings can be of any orientation, methods
that use axis-aligned bounding boxes (e.g. object detection meth-
ods such as R-CNN [31]) are not sufficient. For building DOE,
oriented bounding boxes are required to get tighter and more
precise bounding boxes around the buildings. One approach is
to modify a region proposal network (RPN) [32] to be able to
not only propose axis-oriented regions but also angled ones as
well [22]. The need for oriented bounding boxes extends beyond
the DOE for buildings. To detect planes, boats, and vehicles in
remote sensing images, [23] used a combination of FPN [33] and
RPN. To detect vehicles in aerial images, [24] performed mod-
ifications on SSD [34]. Other methods use separate models for
detection and orientation estimation [25]. Unfortunately, these
studies are limited to images where the objects are visible to the
camera’s point-of-view and are not obscured by other objects (e.g.
clouds).

In contrast, the bed-making scenario would include clutter
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and other objects (e.g. blankets, toys) that would affect the robot’s
ability to sense the pillows. In addition, pillows can exhibit many
different attributes and be located on beds of different characteris-
tics. For example, to increase user comfort, pillows are designed
using different materials [35] and shapes [36]. As a result, meth-
ods for pillow DOE not only have to accurately provide position
and orientation information about the pillow, but also account for
the high variability in pillow appearance. The above studies focus
on objects other than pillows and rely on assumptions (e.g. one
object per image, object centered in image, objects unobscured
in image) that are unreasonable for bed-making, and thus are not
directly applicable to robotic pillow placement.

2.3 Manipulation
In pillow placement, object manipulation is another key as-

pect to consider. A common assumption made in many robotic
object manipulation studies is that the object is rigid [30]. How-
ever, many objects with which we interact every day in living
environments, such as pillows, are deformable. Deformable ob-
ject manipulation is challenging for various reasons: 1) There is
not a trivial approach to representing the configuration of non-
rigid objects [37], and 2) the dynamics of deformable objects
are complex and non-linear [38]. These reasons present chal-
lenges when trying to model the object during task and motion
planning. Various studies have attempted to address these chal-
lenges using techniques such as classical control [26], robust
control [27], and adaptive control [28]. Reinforcement learn-
ing (RL) has also been explored, with some methods requiring
expert demonstrations [29] while others relying on the robot’s
own exploration [30]. However, the RL process is highly data-
and computation-intensive and is not feasible for low-resource
development and operation situations. Simulation can enable RL
models to be trained more efficiently due to simulations 1) being
quicker because of the lack of physical hardware limitations in
the simulation world and the ability to increase real-time factor,
and 2) being able to generate a larger, more diverse amount of
training data because simulation designers can vary environment
parameters and create different environments [39]. However,
discrepancies between simulation and real-world makes it chal-
lenging to apply simulation-trained robotic behaviour to the real
world [40]. This is especially the case for the living environ-
ment, where each setting is unique. Furthermore, the pillows
themselves can also be unique as well, as they can vary in shape,
weight, material, dimensions, and deformation properties. This
physical variability results in the above existing approaches for
manipulation [26–30] not being able to be directly applied to the
pillow placement problem, thus motivating the need to develop
solutions for pillow manipulation.

3. PROPOSED PILLOW PLACEMENT METHODOLOGY
In this section, we present the proposed pillow placement

methodology for enabling a 6-DOF one-armed robotic manipu-
lator to autonomously place pillows at desired goal poses on a
bed (Fig. 2). The main idea of the approach is to first locate
the pillows using an onboard camera, and then manipulate the
pillows according to the pillows’ original poses and goal poses.
More specifically, the proposed architecture is as follows: 1) The

over-the-shoulder camera gathers RGB-D information about the
bed; 2) The pillow detection and orientation estimation process
(Pillow DOE Process) uses the robot view to estimate the position
and orientation of the pillows on the bed (Sec. 3.2); 3) If there are
still pillows to be placed, one of the pillows and its corresponding
goal are chosen based on Euclidean-distance-based comparison
(Sec. 3.3); and 4) The robot actuates its arm and moves the cho-
sen pillow using macro-actions that are based on pillow position
relative to the robot (Sec. 3.4). The remainder of this section will
discuss each module in further detail.

3.1 Conventions
In this research, five reference frames were used (Fig. 3): the

robot frame F𝑅 is attached to the robot’s base, and is set equal to
the global frame F𝐺 because the robot base is static; the camera
frame F𝑆 is attached to the robot’s over-the-shoulder camera; the
overhead frame F𝑂 is attached to an unused overhead camera
that provides a bird’s-eye-view of the bed setup; and the image
frames F𝑆𝐼 and F𝑂𝐼 are the frames of the image captured by the
robot camera and overhead camera respectively. For simplicity
and without loss of generality, the axes of F𝑂𝐼 were set to be
parallel to the global frame, and the bed’s surface was set to be
coplanar to the global x-y plane.

The pillow’s position is the position of the pillow’s center.
The pillow’s orientation is defined to be the angle of the longest
edge of the pillow and is taken with respect to the horizontal axis
and about the axis going into the page. This angle is limited to
be within the range [− 𝜋

2 , +
𝜋
2 ].

3.2 Pillow DOE Process
The goal of the Pillow DOE Process is to provide pose

information about the pillows in order for manipulation to oc-
cur. Specifically, the Pillow DOE Process returns the pose
𝑝
(𝑖)
𝑂𝐼

:=
[︁
𝑢 (𝑖) 𝑣 (𝑖) 𝛼 (𝑖) ]︁𝑇 of the 𝑖𝑡ℎ pillow with respect to

F𝑂𝐼 , where 𝑢 (𝑖) and 𝑣 (𝑖) denote the 2D position and 𝛼 (𝑖) is the
orientation. The process comprises two main steps: First, the
RGB image from the camera (𝐼𝑆𝐼−𝑅𝐺𝐵) is transformed from F𝑆𝐼

into F𝑂𝐼 ; Second, the transformed image is fed into the Pillow
DOE method, which consists of a detection stage and an orien-
tation estimation stage that infers position and orientation of the
pillows in the transformed image. The rest of Sec. 3.2 provides
further details.

R2O Transformation. In this stage, the robot view is trans-
formed into the Robot-to-Overhead (R2O) View (Fig. 4 middle
column). The goal of the R2O transformation is to use the robot
view to generate an image (i.e. the R2O image) that looks as if the
image was taken from the F𝑂. This conversion is done because
the robot in this research (Sec. 4.1) does not use an overhead
camera. The conversion involves using a projective transforma-
tion [41] to map every pixel of the robot view to the overhead
frame [15]. Specifically, each pixel in the robot view RGB image
𝐼𝑆𝐼−𝑅𝐺𝐵 is transformed based on 1) the pose of the robot cam-
era with respect to the F𝑂 and 2) the depth value corresponding
to that pixel, obtained from the robot view depth image 𝐼𝑆𝐼−𝐷 .
The output is a set of images (RGB and depth) that resembles
what the environment would look like from the F𝑂, specifically
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FIGURE 2: PROPOSED PILLOW PLACEMENT PROCESS. THE THREE MAIN STAGES ARE PILLOW DOE PROCESS (IN BROWN, SEC. 3.2),
PILLOW MANIPULATION PLANNING (IN DARK BLUE, SEC. 3.3), AND PILLOW MANIPULATION EXECUTION (IN LIGHT BLUE, SEC. 3.4).

FIGURE 3: PHYSICAL REFERENCE FRAMES USED IN THIS RE-
SEARCH. SUPERIMPOSED ON THE IMAGE OF THE BED SETUP
ARE FR = FG (IN RED), FS (IN YELLOW), AND FO (IN ORANGE).

𝐼𝑅2𝑂−𝑅𝐺𝐵 = 𝐼𝑅2𝑂 and 𝐼𝑅2𝑂−𝐷 respectively. These R2O im-
ages, which would be similar to their overhead view counterparts
𝐼𝑂𝐼−𝑅𝐺𝐵 and 𝐼𝑂𝐼−𝐷 , are useful for cases where an overhead view
is required but the hardware to provide that view is not available.

Detection. Pillow detection was performed on 𝐼𝑅2𝑂 using a
trained YOLOv4-tiny model [42]. YOLOv4-tiny was chosen be-
cause it is a lighter version of YOLOv4 [43], which has shown to
provide accurate detections in real-time applications (e.g. [44]).
Furthermore, the lighter version decreases the amount of compu-
tation and memory that the model would require onboard [45].
The output is a set of bounding boxes that frame the pillows in
the image. The pixel coordinates of the centre of each bound-
ing box are taken to be the position (𝑢, 𝑣) of the corresponding

FIGURE 4: DIFFERENT VIEWS AND THE REFERENCE FRAME TO
WHICH EACH BELONGS. THE IMAGES FROM LEFT TO RIGHT ARE
AS FOLLOWS: TOP ROW SHOWS ISI−RGB , IR2O , AND IOI−RGB ;
BOTTOM ROW SHOWS ISI−D , IR2O−D , AND IOI−D .

pillow. YOLOv4-tiny is also capable of providing confidence val-
ues for each detection; this value is crucial in determining which
detections are kept and which are ignored. The YOLOv4-tiny
model used in the experiments was trained via transfer learn-
ing where a pre-trained YOLOv4-tiny model (trained on the MS
COCO dataset [46]) was trained on labelled 𝐼𝑅2𝑂 of different
bed-making scenarios. 𝐼𝑆𝐼−𝑅𝐺𝐵 and 𝐼𝑆𝐼−𝐷 were captured from
various locations around the bed and not solely from the robot
view used in the setup. Both quantity and pillow pose were varied
to increase the diversity of the dataset. The custom dataset con-
sisted of 7,700 images, and the training-validation-testing split
was 0.85:0.1:0.05.

Orientation Estimation. In this stage, the bounding box
areas outputted by the detection model are first extracted from
𝐼𝑅2𝑂, producing smaller images 𝐼𝑃 of each pillow. Then, each 𝐼𝑃
is fed into OE-CV, a multi-stage process that analyzes 𝐼𝑃 using
classical computer vision methods to estimate pillow orientation
𝛼. The stages are visualized in Fig. 5. Pillow colour (image
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FIGURE 5: ORIENTATION ESTIMATION USING CLASSICAL COM-
PUTER VISION (OE-CV)

3) is first inferred from a sample (image 2) of the centre of
the R2O pillow region (image 1) given by step 3 of the Pillow
DOE Process. Colours that are dissimilar to the pillow colour
are masked (image 4) and thresholded out to isolate the pixels
containing the pillow (image 5). The first principal component
(obtained via PCA [47]) of the remaining pixels provides the
direction of greatest variance and is used to estimate 𝛼. Image 6
shows the first and second principal components as the longer and
shorter white lines respectively. 𝛼 is calculated using the angle
of the first principal component, which completes the process of
determining 𝑝𝑂𝐼 .

3.3 Pillow Manipulation Planning
In this stage, manipulation actions are planned based on the

poses 𝑝𝑂𝐼 gathered from the Pillow DOE Process. 𝑝𝑂𝐼 are
first transformed from F𝑂𝐼 into F𝐺 using a static transformation
matrix determined prior to execution by collecting 3D-2D point
correspondences and solving a PnP-like problem. Following this,
each pillow is assigned a goal pose 𝑝

(𝑖)
𝑔 in the global frame to

which the robot will move the pillow. The pillow-goal correspon-
dence problem is formalized as follows: Given a set of 𝑚𝑔 goal
poses and 𝑚𝑐 current pillow poses, where 𝑚𝑔 ≥ 𝑚𝑐, determine
for each pillow which 𝑝𝑔 to which they should be moved. The
approach used in this paper to assign a goal pose to each pillow
was to determine the pair that minimized the total Euclidean dis-
tance between pillows and goals; the Euclidean distance provides
the path of shortest distance along which the pillow can travel to
reach its desired pose. Let 𝑝 (𝑖)

𝑐 be the position of the 𝑖𝑡ℎ pillow
in the global frame, where 𝑖 = 1, 2 . . . 𝑚𝑐; 𝑔(·) be the correspon-
dence function that maps from current positions to corresponding
goal positions 𝑝

(𝑖)
𝑔 ; and 𝐷 (·, ·) be the Euclidean distance func-

tion that computes the distance between two positions. Then
the correspondence function 𝑔∗, which provides the pillow-goal
correspondences, is

𝑔∗ = arg min
𝑔

𝑚𝑐∑︂
𝑖=0

𝐷
(︁
𝑝
(𝑖)
𝑐 , 𝑔(𝑝 (𝑖)

𝑐 )
)︁

(1)

Since this algorithm has an 𝑂

(︂
𝑚𝑔!

(𝑚𝑔−𝑚𝑐 )!

)︂
time and space

complexity, it quickly becomes computationally infeasible as the
number of goals and pillows increases. However, for a sufficiently
small number of goals and pillows, such as the 𝑚𝑐 ≤ 2 in this
experiment, this simple algorithm is acceptable.

3.4 Pillow Manipulation Execution
The goal of this stage is to move the pillows to their desired

goal poses. Pillow manipulation execution can be decomposed
into two main steps: a coarse adjustment step and a fine ad-
justment step. In the coarse adjustment step, the pillow is moved
from the start pose to a pose that is near the 𝑝𝑔, specifically within
arbitrary radius 𝑅 from 𝑝𝑔 where 𝑅 is usually the maximum de-
viation between 𝑝𝑔 and current pose after the coarse adjustment
step. In the fine adjustment step, the pillow is adjusted to 𝑝𝑔.

Based on the pillow-goal pairs {(𝑝 (𝑖)
𝑐 , 𝑝

(𝑖)
𝑔 ) |𝑖 = 1, 2, . . . , 𝑚𝑐}

from the manipulation planning stage, a set of gripper poses are
calculated as position waypoints 𝑟 ( 𝑗 ) for the robot to follow,
where 𝑗 is the waypoint index. The specific set of waypoints
used {𝑟 ( 𝑗 ) | 𝑗 ∈ Z+} depends on which action is executed. The
robot uses two distinct macro-actions to manipulate the pillows:
Pillow Move and Pillow Drag, both of which include a series of
primitive actions (i.e. joint movements) performed by the robot
when given a set of gripper poses.

The robot is only expected to be able to place pillows that it
can access with its gripper. The area of the bed which a robot
can reach is referred to in this work as the robot’s Accessible
Region R𝐴. For static manipulators that are constrained by their
dimensions and joint configuration, such as that used in the ex-
periments, the R𝐴 is constant and limited to a certain portion of
the bed (Fig. 6 right). The robot manipulates pillows in R𝐴 using
the two different macro-actions.

Pillow Move Macro-Action. The Pillow Move macro-action
moves the pillow from the 𝑝𝑐 to 𝑝𝑔. The sequence of primitive
actions involves positioning the gripper above the pillow centre,
grasping the pillow from above, then moving the pillow to 𝑝𝑔.
By positioning the gripper above the pillow centre, the pillow’s
position on the bed can be controlled by specifying the gripper’s
position above the bed. For example, if 𝑝𝑔 = (𝑥𝑔𝑜𝑎𝑙 , 𝑦𝑔𝑜𝑎𝑙 , ℎ)
where ℎ is the height of the pillow, then the goal gripper location
that is required to move the pillow would be (𝑥𝑔𝑜𝑎𝑙 , 𝑦𝑔𝑜𝑎𝑙 , ℎ +Δ)
where Δ is the distance above the pillow that the gripper must be
to grasp the pillow. By grasping from above, the orientation can
be changed through pronation and supination of the gripper wrist
(joint 6 in Fig. 1). Because this approach entails the gripper to be
pointing down instead of away from the robot, the region that the
robot can access using the Pillow Move action is only a portion
of the total Accessible Region: This smaller region is referred
to in this research as the Placeable Region R𝑃 where R𝑃 ⊆ R𝐴.
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FIGURE 6: BED-MAKING SETUP WITH THE MAJOR COMPONENTS
LABELLED (LEFT). ROBOT ACCESSIBLE REGION IS SHOWN
IN GREEN AND YELLOW WHILE THE PLACEABLE REGION IS
SHOWN IN GREEN (RIGHT).

This is thus the region in which the pillow centre must be located
in order for the Pillow Move action to be possible (Fig. 6 right).

Pillow Drag Macro-Action. The Pillow Drag macro-action
is performed when the pillow’s centre falls outside ofR𝑃 (but still
within R𝐴). In this case, the robot can no longer reach the pillow
centre from above and has to reach the pillow from the side. The
goal of the Pillow Drag action is to drag the pillow closer to
the robot and into R𝑃 so that the Pillow Move action could be
performed. The Pillow Drag action is an important capability
for the robot to have for future developments because pillows can
easily be outside of R𝑃 during real-life bed-making situations.

4. REAL-WORLD EXPERIMENTS
4.1 Setup

Environment Setup. This research used a miniature bed-
making scenario of 2:5 scale (Fig. 6 left). The robot was placed
near the bed, halfway along the longer side of the bed. A mock
bed was created to model an actual-sized bed. The bed is 0.50
m x 0.75 m, and consists of a soft bottom portion (in red) and
a blanket that covers that portion (in dark blue and white). Two
pillows were used in the experiments. The orange pillow is 13
cm x 20 cm x 6.5 cm while the green pillow is 13 cm x 20 cm x
7.5 cm. Each pillow comprises a cotton filling enclosed within a
polyester pillowcase.

Robot Setup. The robot used in the experiments was the
Niryo One robot [48], a 6-DOF jointed arm robotic manipulator
with a 2-finger gripper as its end effector (Fig. 1). Mounted in an
over-the-shoulder position on the left-hand side of the robot is an
Intel RealSense Depth Camera D415 sensor [49] that provides the
system with 1280 x 720 pixel RGB-D images of the environment.
The robot’s six DOFs allow it to have a robot workspace that is
sufficient for accessing >50% of the bed plane R𝐵. However, due
to the robot’s size, the robot’s reach at a given base position is
limited to a certain area of the bed, hence R𝐴 < R𝐵.

Experiment Setup. Experiments were conducted to test the
proposed bed-making process in terms of 1) the performance of
the Pillow DOE Process in estimating position and orientation
of pillows and 2) the success rate in placing pillows. The for-
mer was measured using three metrics during the Pillow DOE
experiments: 1) Intersection over Union (IoU); 2) Bounding Box
Deviation (BBD), which is the distance between the centre of
the ground truth bounding box and that of the predicted bound-
ing box; and 3) Percentage of Predictions within specific ranges,

which is denoted as PP@𝜌 where 𝜌 is the angle range in degrees.
The metric used to measure overall pillow placement performance
during the Pillow Placement experiments was the percentage of
pillows successfully placed by the robot. This metric was chosen
because it directly quantifies the methodology’s ability to enable
robotic pillow placement.

4.2 Pillow DOE Experiments
Detection and orientation estimation were tested separately

first before testing them together. The purpose of this experiment
was to evaluate the DOE method’s ability to perform pillow DOE
and what weaknesses should be considered. The 385 images used
in this experiment were taken from the test set.

In the detection test, the trained YOLOv4-tiny model was
tested on its ability to accurately surround pillows in 𝐼𝑅2𝑂 with
bounding boxes. This test was conducted by first resizing 𝐼𝑅2𝑂
to the 416 x 416 pixel images required by YOLOv4-tiny and then
using the resized images as input to the model. In the orientation
estimation test, the OE-CV model was tested on its ability to
accurately assign orientations to pillows. To test this, 𝐼𝑃 were
generated by cropping image sections containing pillows from
the original 𝐼𝑅2𝑂 and inputted into the OE-CV model. In the full
DOE test, the detection and orientation estimation capabilities
were combined and tested on their ability to accurately determine
the poses of pillows in the image.

4.3 Pillow Placement Experiments
In the pillow placement experiment, the full pillow placement

process was tested. The R𝐴 and R𝑃 were identified prior to
the experiments. During the experiment, a set of runs were
performed, where each run consisted of the following steps: 1)
Randomly generate start poses {𝑝 (𝑖)

𝑐 | 𝑖 = 1, 2, . . . , 𝑚𝑐} and
goal poses {𝑝 (𝑖)

𝑔 | 𝑖 = 1, 2, . . . , 𝑚𝑔} for the pillows subject to
the constraints imposed by R𝐴 and R𝑃 . Specifically, 𝑝

(𝑖)
𝑐 ∈

R𝐴, 𝑝
(𝑖)
𝑔 ∈ R𝑃 ∀𝑖; 2) Manually place the pillows at 𝑝 (𝑖)

𝑐 ; 3) Run
the pillow placement process and allow the robot to autonomously
place the pillows. A run was successful if the final poses of the
pillows reached 𝑝

(𝑖)
𝑔 within acceptable error 𝜖 = (𝜖𝑥,𝑦 , 𝜖𝜃 ). In

this experiment, 50 runs were performed, and 𝜖 = (3.7 cm, 15◦).

5. RESULTS AND DISCUSSION
In this section, we discuss the results for each of the experi-

ments that were mentioned in the previous section, namely those
for pillow DOE and pillow placement.

5.1 Pillow DOE Experiments
Detection Experiment. Table 1 presents a summary of the

detection performance, which shows that the positions of the pil-
low centres outputted by the detection model are only on average
2.4 cm away from the ground-truth position. This level of error
is acceptable because the robot could place pillows successfully
during the experiments despite small errors (<5 cm deviation).

Since one characteristic of an unmade bed is its messiness,
we also explored the effect of introducing folds in the blanket
and objects of varying dimensions and colours onto the bed. A
constant number of objects were used, and both the folds and
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TABLE 1: PERFORMANCE OF YOLOV4-TINY ON DETECTING PIL-
LOWS

Metric Mean Min Max
Intersection over Union (IoU) 75.9% 51.4% 93.4%

Bounding Box Deviation (BBD) 2.4 cm 0.55 cm 5.4 cm

FIGURE 7: EXAMPLE OF USING THE DETECTION MODEL FOR A
CLUTTERED BED. THE LEFT-HAND IMAGE SHOWS THE DETEC-
TION RESULTS; MAGENTA BOUNDING BOXES INDICATE THE DE-
TECTIONS, AND THE CORRESPONDING CONFIDENCES ARE IN-
CLUDED ABOVE THE BOUNDING BOXES. THE RIGHT-HAND IM-
AGE SHOWS THE CORRESPONDING ROBOT VIEW.

objects partially covered the pillows, an aspect not encountered
in the dataset. For example, Fig. 7 shows an example where the
green pillow and orange pillow were only approximately 80%
visible due to the blanket and objects. In this example, although
both pillows were not fully visible, the model successfully de-
tected both pillows. Furthermore, the model was able to ignore
other objects on the bed (e.g. the plastic toys of varying colors).
For the non-pillow objects detected, detections with <60% con-
fidence (e.g. the green-yellow spoon near the right-hand side of
the image) were ignored by setting the confidence threshold to
be ≥ 60%. However, the orange non-pillow object at the bottom
was detected with 93% confidence, and hence would be treated
as a valid detection if the threshold was set to be less than 93%.

Orientation Estimation Experiment. Figure 8 shows an
example of the results. A common occurrence for errors was
when the R2O version of pillows was shaped as right-angled
triangles (Fig. 8 bottom-right). In these cases, the direction of
the principal component found using PCA during the OE-CV
process was not in the direction of the desired orientation line,
but rather in the direction of the triangle’s hypotenuse. Despite
this weakness, OE-CV was accurate within 30◦ for 98% of the
tests (Table 2).

DOE Experiment. Figure 9 shows an example of the results.
As expected from Tables I and II, the predicted bounding boxes
and orientation lines in the DOE experiment were very similar to
the ground truth: BBD<6 cm and PP@30=95% . The last row
shows an interesting case. The green pillow is detected as having
its long side closer to being parallel to the image x-axis than to
being parallel to the y-axis (i.e. the pillow seems to be horizontal).
However, in reality, the pillow is closer to being vertical. The
robot view shows the reason for this error: The green pillow
was not fully visible to the camera (i.e. <20% of the possible
visible area), and the DOE method inferred that the pillow was
more horizontal than vertical based on the limited information.
In the pillow placement experiments, this error in the pillow

TABLE 2: PERCENTAGE OF OE-CV PREDICTIONS FALLING
WITHIN SELECT RANGES

Metric OE-CV Performance
10◦ from the truth (PP@10) 53%
20◦ from the truth (PP@20) 80%
30◦ from the truth (PP@30) 98%

FIGURE 8: OE RESULTS SHOWING VARYING OE-CV PERFOR-
MANCES. ORIENTATION LINES SUPERIMPOSED ON THE R2O IM-
AGES INDICATE PILLOW ORIENTATION. THE RED AND WHITE
ORIENTATION LINES ARE THE OE-CV OUTPUT AND GROUND
TRUTH RESPECTIVELY. THE ANGLES IN THE LEGENDS ARE IN
DEGREES.

orientation was not a concern since the pillows were assumed to
be sufficiently visible (>50% of the possible visible area) for the
robot to detect the pillows. For cases where the deviation between
the inferred pose and the true pose is sufficiently large (>7 cm),
the robot would fail to grasp the pillow and would try again in the
next iteration.

5.2 Pillow Placement Experiments
A video of one of the pillow placement runs is presented

at https://youtu.be/BXcwffPKcGI. Table 3 shows a summary of
the results. Pillow placement was successful in 89% of the runs.
One of the common issues encountered during the runs was when
pose adjustment was small (<15◦ or <1 cm from the pillow’s
undeformed state). In those cases, the robot’s force would only
contribute to deforming a portion of the pillow and not change
the pillow’s pose. As a result, actions that performed small pose
adjustments were only successful approximately 50% of the cases
where the required pose adjustment was <15◦ or <1 cm. For
example, during small orientation adjustments, the gripper only
deformed the pillowcase while the rest of the pillow remained
stationary.

TABLE 3: PILLOW PLACEMENT EXPERIMENTAL RESULTS AT A
GLANCE

Correct Incorrect
Position Position

Correct Orientation 89% 1%
Incorrect Orientation 3% 7%
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FIGURE 9: DOE RESULTS. THE ROWS SHOW RESULTS OF PERFORMING PILLOW DOE ON VARIOUS ROBOT VIEWS. THE FIRST COLUMN
SHOWS THE ROBOT VIEW. THE SECOND COLUMN SHOWS THE BOUNDING BOXES (IN MAGENTA) AND ORIENTATION LINES (IN YEL-
LOW AND CYAN) (WHOSE ANGLE IS THE PILLOW ORIENTATION) SUPERIMPOSED ON THE R2O IMAGE. THE THIRD COLUMN SHOWS THE
GROUND TRUTH DOE. THE ANGLES IN THE LEGENDS ARE IN DEGREES.

The iterative nature of the process allowed the robot to at-
tempt the manipulation again in the following iteration if the ma-
nipulation was unsuccessful in the current iteration. The number
of actions performed in each run varied based on whether or not
the pillows were within R𝑃 . Another factor that increased the
number of actions required was the number of imperfect places:
Every time the robot moved the pillow to the goal pose and the pil-
low did not reach the goal pose, the robot would have to perform
the action again in the following iteration. The mean number of
actions per pillow placed 𝑠𝑚𝑒𝑎𝑛 was calculated as follows:

𝑠𝑚𝑒𝑎𝑛 =
1
𝑛𝑃

𝑛𝑟𝑢𝑛𝑠∑︂
𝑘=0

𝑚𝑐∑︂
𝑖=0

𝑠
(𝑖)
𝑘

(2)

where 𝑛𝑃 is the total number of pillows placed, 𝑛𝑟𝑢𝑛𝑠 is the
number of runs, and 𝑠

(𝑖)
𝑘

is the number of actions required to
place the 𝑖𝑡ℎ pillow during the 𝑘 𝑡ℎ run. Across the 𝑛𝑃 =50 runs,
𝑠𝑚𝑒𝑎𝑛 =2.8 while the minimum possible mean number of actions
needed was 1.3. This minimum value was calculated based on the
minimum number of actions required to place pillows within R𝑃
being 1 (i.e. one Pillow Move action) and that for pillows outside
of R𝑃 being 2 (i.e. one Pillow Drag action and one Pillow Move
action). The experimental mean is greater than the minimum
possible mean, which agrees with the observation that pillows

were often not placed perfectly the first time the Pillow Move
action was performed.

6. CONCLUSION
In this paper, we presented a novel process that enables

a static one-armed 6-DOF robotic manipulator to address the
challenges of robotic pillow placement. While existing litera-
ture focuses on the sheet spreading part of the bed-making task,
the robotic pillow placement task has been neglected despite its
unique challenges. To fill this gap, our approach included the
use of learning-based object detection, classical computer vision
methods, and manipulation macro-actions, all arranged in a se-
quential pillow placement process. We evaluated the proposed
research in terms of the percentage of pillows successfully placed,
where results showed the feasibility of the proposed process in
enabling robotic pillow placement. While the robot was able to
accomplish the pillow placement task for 89% of the runs, limita-
tions include the following: 1) the dataset used to train the DOE
method was not representative of bed scenarios a bed-making
robot would encounter in real life; 2) the diversity of pillows used
is limited. Thus, future work is needed test the robot in more
bed-making scenarios in order to enable the system to be more
robust to changes in the environment.
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