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Abstract
This article proposes the design and development of a novel custom-built, autonomous scaled multiwheeled vehicle
that features an eight-wheel drive and eight-wheel steer system. In addition to the mechanical and electrical design,
high-level path planning and low-level vehicle control algorithms are developed and implemented including a two-
stage autonomous parking algorithm is developed. A modified position-based visual servoing algorithm is proposed
and developed to achieve precise pose correction. The results show significant gains in accuracy and efficiency com-
paring with an open-source path planner. It is the aim of this work to expand the research of autonomous platforms
taking the form of commercial and off-road vehicles using actuated steering and other mechanisms attributed to pas-
senger vehicles. The outcome of this work is a unique autonomous research platform that features independently
driven wheels, steering, autonomous navigation, and parking.

1. Introduction
The world of automobiles has experienced several milestones in its development since its inception
in 1886 by Karl Benz [1]. From inventions such as automatic transmissions, satellite navigation to
sensor-based cruise control, automotive engineers have produced several commercialized and innova-
tive solutions that made traveling easier, more affordable, and accessible. Today, the automotive industry
is seeing its latest revolution centered around the automation of transportation systems. This revolution
entails the retiring of old manual gasoline vehicles with driverless electric systems to create a more con-
venient and safer way of travel [2]. This is accomplished by vehicles becoming more intelligent through
the addition of sensors. Benefits of this include better vehicle accessibility for those who cannot drive
and car-sharing features that lessen traffic congestion. The potential to impact the streets for road users
is unmatched; not to mention, its ability to generate numerous job and business opportunities around
the world [2]. These advantages along with several unmentioned ones quickly made autonomous vehi-
cle technologies an extremely sought-after research topic. As a result, substantial efforts are made by
automakers, technology companies, and academic institutions to collaboratively accelerate progress in
this field.

Presently, autonomous navigation features for vehicles with traditional configurations such as two
axles and front-wheel steering are studied and documented extensively with real-world deployment [3,4].
However, multiwheeled vehicles have not received nearly as much attention due to their limited market.
This type of vehicle finds its applications primarily in off-road and military settings because of its ability
to traverse through rough terrains. As the push for more autonomous navigation capabilities continues,
a shared space with mobile robots begins to emerge due to the comparable fundamentals. Likewise,
mobile robots and scaled vehicle platforms are often smaller than their life-size counterpart which per-
mits researchers to conduct experiments in indoor laboratories. This is tremendously convenient when
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focusing on the different subsystem algorithms pertaining to mapping, localization, and path planning
since a full-size vehicle model is not always necessary during development.

Nevertheless, a problem that exists is that commercial mobile robots sold today are generally
equipped with a differential drive set up and often lack car-like features such as steering and suspen-
sion. This problem is even more apparent for mobile robots that feature multiaxles. As a result, a novel
eight-wheel drive and eight-wheel steer (8WD8WS) scaled robotic vehicle is designed and developed in
this article along with both high and low-level control algorithms to enable autonomous point-to-point
navigation. The platform will be referred to as the scaled multiwheeled vehicle (SMWV). The motive is
to create a physical prototype that features car-like suspension and steering for future autonomous vehi-
cles and dynamics control research. The novelty of the work includes the designed autonomous research
platform, capable of independent drive and steer of each of its eight wheels as well the associated kine-
matic model. In addition, two main algorithms are developed for the autonomous motion of the SMWV
including a parking algorithm and a modified position-based visual servoing (M-PBVS) algorithm. Both
algorithms are validated through experimentation in the following sections of this article.

The remaining portions of this article are organized into the following sections: related work on this
topic is covered in the next section with a detailed description of the design and development of the
SMWV thereafter. The different methodologies relating to motion control, path planning, and visual
servoing are discussed in Section 5 and 6, respectively, with experimental results and discussion pre-
sented in Section 7. Following this, Section 8 describes the conclusions reached and recommended
future works, followed by acknowledgments and references.

2. Related Work
Because of its ability to maneuver in rough terrains, multiwheeled vehicles often find their applications
in off-road environments that range from agriculture [5,6] to space exploration [7]. Related work in this
field is categorized into three major areas which are the novel design and development of the mobile
platform [8–14], the low-level vehicle control, and the high-level navigation algorithms. The following
covers publications within the past decade in each of these areas to provide readers with an understanding
of the current state of the art.

Starting with the design and development of novel multiaxle vehicles, recent publications on
six-wheeled robots are proposed in [8]. In these articles, the primary application focuses on space explo-
ration robots. An interesting agriculture application is seen by Kumar et al. [9] where a novel platform
operates in a garden for plant identification and classification using neural networks. The goal is to
recognize and determine the amount of water and fertilizer necessary to facilitate optimal growth. The
above-mentioned papers all focus on six-wheeled designs that feature rocker-bogie suspension and dif-
ferential drive trains. In terms of other wheel configuration for robots, an interesting application seen by
Prabhu et al. [10] uses a six-wheeled articulated robot that has its design parameters optimized for step
climbing operations. Although the mentioned papers thus far feature multiwheeled drive trains; none
share similarities with traditional vehicles in terms of steering such as the work conducted by Garcia
et al. [11]. The authors develop a 12 degrees of freedom model for a four-wheel drive, four-wheel steer
(4WD4WS) robot as well as validating the model on a prototype. Another group of researchers [12]
developed a similar platform with added features for lane following, reverse and parallel parking using
machine vision and fuzzy controllers. For soil sample collection and fertilizer dispensing, [13] proposes
another 4WD4WS platform where a new extended Ackerman steering principle is introduced. Since
robots with independently steered wheels are theoretically capable of multiple steering modes, a com-
prehensive analysis for a 4WD4WS platform is described in [14]. The steering modes studied include
front-wheel, all-wheel, crab, and diamond steer. From the mentioned papers, recent publications on
novel designs of all-wheel drive and all-wheel steer (AWDAWS) platforms are primarily focused on
four-wheel variations while multiwheeled platforms achieve a maximum of eight wheels with the lack
of car-like steering and suspension due to system complexity.
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In terms of low-level kinematics and dynamics control systems for multiwheeled vehicles, papers
such as [15,16] set the basis for modeling of six and eight-wheeled platforms, respectively. A kinematics
control law that considers wheel yaw, roll, and suspension pitch for a 4WS4WD vehicle is proposed
in [11]. Aponte et al. [17] designed a dynamic model for a four-wheeled strawberry collecting robot
that also analyzed tire soil interactions in addition to testing a physical prototype. Motion control
with in-wheel motors is described for a six-wheel drive and six-wheel steer (6WD6WS) vehicle in
[18] where vehicle dynamics performance are improved, implementing independent wheel torque and
steering control; the results from this work are validated based on simulation. Vehicle stability and
maneuverability are discussed in [19] where both an upper and lower controller works together to
determine steering angles based on longitudinal forces, yaw moment, and tire force information. To
ensure the vehicle accurately follows a given path, a bounded velocity motion controller with nonlinear
control techniques is described in [20]. Beyond control system development, the controllability of a
similar vehicle for high-speed navigation in rough terrains is studied in [21]. All the mentioned work
in control systems up to this point along with the others that are available generally focuses on four to
six-wheeled vehicles with limited literature for eight-wheeled vehicles.

In terms of high-level navigation algorithms of AWDAWS vehicles, recent publications have centered
around either path planning or path following. An application in this area is seen by Li et al. [22] where
a hybrid visual servo trajectory strategy is developed for wheeled mobile robots equipped with onboard
vision systems and an adaptive controller is designed to periodically update the objective distance. As
seen by Wu et al. [23] a nonholonomic four-wheeled robot employs asymptomatic tracking control using
a neural controller. In this way, tracking errors can be reduced when subjected to actuator saturation and
external disturbances simultaneously. Another study completed by Wu et al. [24] used a four-wheeled
robot and proposed a control algorithm for training an artificial neural network for path planning. The
system consists of two artificial neural networks to ensure optimal motion for steering from the current
position of the mobile robot to a prescribed position taking its orientation into account. One of the neural
networks serves to specify the position and the size of the obstacle, and the other forms a continuous
trajectory to reach it. The neural network is trained on the basis of samples obtained by modeling the
equations of motion in the form of Euler’s Elastica. In other works, a two-wheel drive, two-wheel steer,
car-like robot is analyzed alongside its kinematic model by Chen et al. [25]. In addition, the authors used
the back-stepping method alongside a sliding mode controller to reduce error. Path planning using A∗ and
the Dynamic Window Approach is implemented in research conducted by Lin et al. [26] for a 4WD4WS
robot. This work is improved in [27] where pose estimation with RTK GPS and wheel encoders through
an extended Kalman filter is applied. Most recently, a path planning technique that utilizes 7-order Bezier
curves is developed to also provide velocity and acceleration profiles for a 4WD4WS vehicle in [28]. In
this work, the vehicle is represented as a rigid body with previously determined characteristics such as
mass and inertia. Conversely, recent path following algorithms includes a basic approach that considers
kinematic geometry is presented in [29]. Hamerlain et al. [30] studied the control of a car-like robot using
a custom-designed practical tracking controller using the second-order sliding mode control of the super
twisting algorithm. Ghaffari et al. [31] utilize Mamdani fuzzy logic controllers to follow waypoints that
are generated based on the curvature-derived point selection algorithm. Further development of this
approach can be found in [32].

For 8WD8WS vehicles specifically, research focused on dynamics control and path planning has
been published over the last few years by members of the Crash Simulation and Vehicle Dynamics Lab
at the University of Ontario Institute of Technology. The work in control systems started most notably
with torque distribution in [33] for an 8WD8WS vehicle. This work was later improved by [34] with a
feedforward zero side slip controller that is implemented to generate the rear-axle steering angles. An
optimal path planning algorithm based on the artificial potential field is proposed in [35] to drive the
vehicle to a goal destination. Later, a robust heading angle controller using h-infinity is introduced to
overcome system disturbances such as noise [36]. All mentioned works are tested in simulation with
promising results; however, physical experiments are required for further validation.

From the mentioned literature, it is evident that an area lacking investigation is experimental research
using 8WD8WS mobile robot systems. As a result, a novel SMWV that features independent suspension,
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Figure 1. Physical model of the SMWV.

car-like steering, and driven wheels is introduced in this article. The intent is to create an innovative
platform that will serve as a research tool for future autonomous vehicle technologies. The design and
development of this custom SMWV are covered in all its major areas such as mechanical, electrical,
and software systems. In mechanical systems, the design of the chassis, suspension, and steering are
discussed. To actuate the vehicle, sensor instrumentation and hardware architecture are described in
detail along with the derivation of a kinematics model. Lastly, low-level driving and steering controllers
that consider Ackerman’s geometry is proposed in this work along with an incremental-based localiza-
tion algorithm. All algorithms are combined with open-source path planners in robot operating system
(ROS) to create a fully functioning SMWV platform with obstacle avoidance and navigation capabilities.

3. The Scaled Multiwheeled Vehicle
The mechanical system of the SMWV is classified into four different subsystems; namely, chassis, sus-
pension, driving, and steering. Each of these subsystems is illustrated in this section along with detailed
descriptions regarding the design decisions. A model is derived after all aspects of the mechanical and
hardware architecture design are covered to describe the kinematics and steering geometry of the vehicle.
Figure 1 shows the physical model of the SMWV that was designed and built over 2 years.

3.1. Chassis and Suspension System
The design of the chassis of the vehicle resembles the shape of the letter “T” as seen in Fig. 2. It is
made of five sheets of aluminum with one for the front, back, left, right, and bottom. Each of these
sheets is bent into shape and riveted together to form a rigid chassis. This design features two internal
layers which are utilized for the steering and driving systems. As highlighted in Fig. 2, attached to each
wheel is an upper and lower control arm which is inspired by a double-wishbone suspension system [37]
which traditionally uses two “wish-bone” shaped arms to control the vertical motion of the wheel. The
lower control arm is custom-made with water jet steel to ensure durability. Each suspension features gas
shocks that are reinforced by coils to improve maneuverability in rough terrain. This kind of system has
the advantage of creating negative camber as the wheel travels through its range vertically. Because of
this, the vehicle can achieve greater handling abilities due to improved stability as tires can maintain
contact with the surface.

3.2. Driving and Steering System
Next, the driving and steering systems are discussed in this section. As previously mentioned, the “T”
shape chassis is designed with two internal layers housing the necessary driving and steering components
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Figure 2. Front view of the SMWV.

Figure 3. Internal layers of the SMWV.

Figure 4. Top view of the 1st axle in the driving layer.

to actuate the vehicle. Each layer has a surface area of approximately 0.10 m2. Figure 3 illustrates the
driving layer and the steering layers.

Starting from the bottom with the driving layer, there are two DC motors per axle for a total of eight
independently driven wheels. Each DC motor is attached to a 33:1 gearbox to reduce the total rotational
speed while increasing the output torque. More specifically, the maximum rotational output speed is 217
rpm while the nominal output torque is 2.41 Nm. With these specifications, the vehicle can achieve a
top speed of approximately 1.80 m/s. Due to the limitations imposed by the dimension of the chassis, it
is not possible to align two motors along an axle for a direct drive system unless the motors were placed
at an angle. This would create an inefficient drive train; therefore, a belt drive system with a 1:1 ratio
per wheel is implemented instead. This setup enables the motors to be mounted in parallel with the axle
axis as illustrated in Fig. 4. In this figure, the top and bottom DC motors are driving the left and right
wheels, respectively. Placed in between the sidewall of the chassis and the output pulley is an encoder
that is mounted on the output shaft.

The steering layer sits approximately 6.35 cm on top of the driving layer where linear actuators are
attached to each wheel assembly through a tie rod. Each actuator has a total stroke of 50 mm with 25
mm being the neutral position. Steering of each wheel is accomplished by extending and retracting each
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Figure 5. Top view of the 1st axle in the steering layer.

Figure 6. Global (X,Y) and Local (L,B) reference frame of SMWV.

actuator. In Fig. 5, an extended left actuator with a retracted right actuator would steer both wheels to the
left. The tightest turn would happen at full extension and retraction, respectively. Built into each actuator
are potentiometers that provide stroke position feedback. The maximum stroke of each linear actuator
and achievable steering angles are 50 mm and 35 degrees, respectively. The relationship between this
feedback and the achieved steering angle is derived experimentally as seen in Fig. 12, in the following
sections of the paper.

3.3. Kinematics Model
3.3.1. Robot Position and Reference Frame
In this section, the kinematics model of the SMWV is derived. Siegwart & Noorkbash’s reference book is
utilized to provide a guideline to develop the kinematic model [38]. The complete kinematic model also
utilized attributes from the two-wheel bicycle model of a vehicle. Figure 6 demonstrates the relationship
between the global reference frame (signified by axes X and Y) and the local reference frame oriented
in the direction of the wheelbase (B) and the longitudinal axis (L).

3.3.2. Robot Maneuverability
The SMWV is composed of eight standard steerable wheels which increase complexity when analyzing
the maneuverability of the vehicle. The first component to analyze is the degree of mobility (δm) which is
a measure of the number of degrees of freedom of the robot chassis that can be immediately manipulated
through changes of wheel velocity [38]. As illustrated by Fig. 7, a simplified bicycle model along the
longitudinal axis is illustrated between the physical wheels of the vehicle. More specifically, (δLi, δRi)

denotes the steering angles of the wheels of the vehicle while (δ1, δ4) denotes the steering angle average
of the first and last axle.

As seen in Fig. 7 for the complete kinematic model of the vehicle, the eight wheels can be found to
connect to an instantaneous centre of rotation which contributes one kinematic constraint. Therefore, the
mobility can be calculated as a difference between the number of constraints and total possible degrees
of freedom of the SMWV which is equal to 3, thus the degree of mobility (δm) is seen to be equal to 2.
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Figure 7. Kinematic model of 8 × 8.

Another important parameter is the degree of steerability (δs) which considers that steered wheels
do not have an instantaneous effect on the pose of the robot chassis but affect the pose over time. The
degree of steerability accounts for each independent, steerable wheel. Due to the SMWV having eight
steerable wheels, in general, the degree of steerability for this vehicle is 8. However as seen in proceeding
sections to streamline vehicle control, several steering configurations which coordinate and limit wheel
steering angles have been developed. This, therefore, reduces the degree of steerability but allows for
useful steering maneuvers.

Finally, the degree of maneuverability (δM) can be defined as the overall degrees of freedom that a
robot can manipulate. As seen in Eq. (1), the degree of maneuverability (δM) is the sum of the degree of
mobility (δm) and the degree of steerability (δs)

δM = δm + δs = 2 + 8 = 10 (1)

3.3.3. Robot Kinematic Model and Steering Angle Constraints
The linear velocities are calculated by the product of the total longitudinal velocity, v, and the vehicle
orientation with respect to the x-axis, θ , along with the angle between the direction of the velocity with
respect to the longitudinal axis of the vehicle, ϕ. The rate of change of the heading angle is denoted by
θ̇ , which is calculated by considering the length to the center of gravity (CG) of the vehicle from the
front and rear axles. Equation (2) represents the nonlinear continuous-time relationships of the different
velocities of the system where (ẋ, ẏ) are the linear velocities along the respective axis.⎡

⎢⎣
ẋ

ẏ

θ̇

⎤
⎥⎦ = v ∗

⎡
⎢⎣

cos (θ + ϕ)

sin (θ + ϕ)
cos (ϕ)
l1+l4

( tan δ1 − tan δ4)

⎤
⎥⎦ (2)

To find the velocity at the CG, the velocity average of the first and last axle of the vehicle, (v1, v4), is
calculated as shown below:

v = v1 cos (δ1) + v4 cos (δ4)

2 cos (ϕ)
(3)

Moving forward, the angle between v and the longitudinal axis of the vehicle is calculated with
Eq. (4):

ϕ = tan−1

(
l1 tan (δ1) + l4 tan (δ4)

l1 + l4

)
(4)
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Table I. 8WD8WS SMWV specification.

Chassis dimension (mm) 1124.6 × 606.4 × 596.3
Total wheel base (mm) 604
Track width (mm) 460
Tire radius (mm) 88.9
Suspension rating 30 lb shocks + 10 lb coils
Total mass (kg) 40
Max speed 1.80 m/s
Max steering angle 35 degrees
Max climb angle 35 degrees

To simplify Eqs. (3) and (4), the path curvature of the vehicle, σ , along with some assumptions are
considered. Starting with the curvature equation which is calculated as the inverse of the turning radius
which is better defined as the quotient of angular and linear velocities. This relationship is illustrated in
Eq. (5):

σ = R−1 = θ̇ + ϕ̇

v
(5)

Besides the curvature equation, the necessary assumptions made to simplify Eq. (2) include setting
the CG location to the middle of the vehicle body and assuming the velocities, (v1, v4), are equal in
magnitude but opposite in direction. With these assumptions applied, Eq. (2) and the derivative of Eq.
(4) is substituted into Eq. (5) to form the kinematics model below:⎡

⎢⎣
ẋ

ẏ

θ̇

⎤
⎥⎦ = v ∗

⎡
⎢⎣

cos (θ )

sin (θ )

σ

⎤
⎥⎦ , where σ = 2 tan (δ)

l
(6)

As shown in Fig. 7, the scaled 8WD8WS vehicle is designed to follow Ackerman’s steering geometry
[39] to reduce tire degradation. Since the vehicle is in all-wheel steer mode, the instantaneous center
of curvature is denoted by, P, which intersects the CG of the vehicle. From there, eight steering angles
relations shown as Eqs. (7a)–(7d) representing the kinematic constraints are calculated as where li and
t denotes the length of each axle to the CG and the track width of the vehicle, respectively.

δL1 = tan−1
(

l1
R−B/2

)
, δR1 = tan−1

(
l1

R+B/2

)
(7a)

δL2 = tan−1
(

l2
R−B/2

)
, δR2 = tan−1

(
l2

R+B/2

)
(7b)

δL3 = tan−1
(

l3
R−B/2

)
, δR3 = tan−1

(
l3

R+B/2

)
(7c)

δL4 = tan−1
(

l4
R−B/2

)
, δR4 = tan−1

(
l4

R+B/2

)
(7d)

3.4. Vehicle Specifications
With the mentioned subsystems, Table I summarizes all basic dimensions and performance specifica-
tions of the SMWV.

4. Electronics Hardware Architecture
The hardware architecture of the SMWV is described in this section with relationships between all
electrical components and specifications listed. Starting with the full system hardware architecture in
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Table II. Electronics component specifications.

Component Specification
Laptop Intel Core i5-5300, 8GB RAM
Battery 14.8V LiPo 5000 mAh and 12V NiMh 2800 mAh
IMU UM7-LT Orientation Sensor
Laser scanner RPLIDAR A2M8 360 Laser Scanner
Receiver Logitech Gamepad F710
Steering controller Arduino Uno + DFROBOT Quad Motor Driver
Driving controller RoboteQ SDC2130 Brushed Motor Controller + 32-bit microcomputer
Linear actuators Actuonix P16 Micro Linear Actuator 50mm, 22:1 with a potentiometer
DC motors Maxon DC Brushed motors with 33:1 gearbox
Encoders AMT10 incremental encoder

Figure 8. Full system hardware architecture.

Fig. 8, the central processing unit of the SMWV is an onboard laptop computer loaded with Ubuntu
14.04. This computer is interfaced with various controllers and sensors via a Universal Serial Bus (USB)
hub. Beginning with the controllers, two types are embedded in the vehicle. The first type is denoted as
the steering controller which controls up to four linear actuators per unit. Since one of the novelties of the
vehicle is its 8WS setup; therefore, two steering control units are necessary to control one linear actuator
per wheel. Besides receiving and providing 12V from the onboard power supply to the linear actuators,
the steering controllers also receive feedback from a built-in potentiometer that enables closed-loop
stroke/steering control. On the other hand, the second type of controller is denoted as the master driving
controller where a single unit is implemented per axle to control up to two DC motors. For simplicity,
the driving controllers are set up in a way where only a master is controlled by the laptop via USB and
the remaining three are controlled via CAN as slave nodes. Attached to the end of every DC motor are
encoders that provide feedback for closed-loop speed control. As shown in Fig. 8, each driving controller
receives 15V from the onboard power supply and provides them to the DC motors where it is then stepped
down to 5V for the encoders. In terms of sensor instrumentation, a 9 DOF inertial measurement unit
(IMU) and 360-degree laser scanner are integrated into the SMWV along with a Bluetooth receiver for
close-range teleoperation.

Table II shows the specifications of the different components embedded within the SMWV. All
components are carefully selected based on size and power constraints:

5. Navigation Methodologies
In this section, the algorithms to achieve both low-level vehicle control and high-level path planning
are described. These algorithms include Proportional – Integral – Derivative (PID) controllers for both
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–

Figure 9. PID differential driving controller block diagram.

Figure 10. Steering angle versus linear actuator stroke.

driving and steering as well as an incremental localization method with wheel encoders and IMU. Once
the low-level algorithms are established, they are consolidated with global and local path planners to
achieve obstacle avoidance and navigation tasks.

5.1. PID Differential Driving Controller
Starting with the driving controller, an incremental encoder is attached to the output shaft of each DC
motor for closed-loop control, as mentioned previously. A PID controller is implemented to ensure the
error between the desired and actual vehicle velocity remains as minimal as possible during operation.
With the encoder feedback, the controller calculates a velocity for the CG of the vehicle, v, which is
used by the software differential to generate inner and outer wheel speeds in the presence of nonzero
yaw commands. The goal is to improve steering maneuverability and decrease tire scrubbing. Equation
(8) calculates the differential speed based on linear and angular velocity as well as the track width, B,
of the vehicle. Fig. 9 shows the PID control block diagram for the motors.

Rightvelocity = v − (
θ̇ ∗ B/2

)
(8a)

Lef tvelocity = v + (
θ̇ ∗ B/2

)
(8b)

5.2. PID Steering Controller
Once the desired steering angles are calculated based on Ackerman’s geometry from Section III, an
actuator stroke position control algorithm is implemented to ensure satisfactory output. Since the vehicle
features independent linear actuators for steering, built-in potentiometers are used for stroke position
estimation. The maximum stroke of each linear actuator and achievable steering angles are 50 mm and
35 degrees, respectively. Figure 10 illustrates the relationship between steering angle and actuator stroke
based on experimental data.

Equation (9) shows 2 third-order polynomials that model this relatively linear relationship except at
full actuator extension. A control law was subsequently derived based on the PID control scheme and
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–

Figure 11. PID steering controller block diagram.

this model. Figure 11 shows the PID control block diagram for the linear actuators.

Strokeleft =
(
5 × 10−5

)
δ3

L + 0.0014δ2
L − 0.7589δL + 24.974 (9a)

Strokeright = − (
5 × 10−5

)
δ3

R + 0.0014δ2
R + 0.7586δR + 24.974 (9b)

5.3. Incremental Localization Algorithm
To localize the SMWV, a dead reckoning algorithm that utilizes both wheel encoders and an IMU is
implemented. In the proposed strategy, the wheel encoders and IMU are responsible for linear and
angular displacement, respectively. The wheel encoders show acceptable performance in short-range
navigation; however, IMU drift issues are hard to ignore. From the experiment, it was determined that
the yaw drift is extra prominent during long-distance navigation and when the vehicle is in an immobile
state. For the former issue, a linear drift was deduced during physical trials; therefore, a compensator
was integrated as a remedy. To alleviate the latter issue, an algorithm that stops updating the orientation
of the vehicle when it is stationary and resumes when the vehicle becomes mobile is integrated. The
results show promising capabilities for the application of this work.

5.4. Path Planning
After low-level vehicle control and localization are established, two open-source algorithms are imple-
mented to achieve high-level global and local path planning [13]. Starting with global path planning,
the classic Dijkstra’s algorithm is deployed to solve the problem of generating a path between the initial
and goal destination. This algorithm works by evaluating a grid cell where values are assigned to every
node to represent the cost of arriving. With this information, an iterative approach is utilized to find
the shortest path. To consider real-time sensor data and mobile robot dynamics, a local path planner
known as the “Timed Elastic Band” is implemented. The primary goal of this algorithm is to transform
a series of waypoints into a trajectory that considers time intervals. It achieves this by modifying the
global planner’s output based on a multiobjective optimization framework. The objective function is the
weighted summation of components, fk, which considers topics such as the nonholonomic constraint,
fastest path, distance to waypoints, and obstacles. This is illustrated within Eq. (10) where B is defined
as a sequence of robot pose and time intervals, (Q, τ):

f (B) = ∑
k γkfk (B) (10)

The previously mentioned component topics are represented in two ways. For the first way, objec-
tive functions that consider the nonholonomic constraint, as well as the fastest path, are shown in Eqs.
(11) and (12). In the following equation, di, i+1 denotes the direction vector between two consecutive
waypoints:

fk (xi, xi+1) =
∥∥∥∥∥∥
⎡
⎣

⎛
⎝ cosβi

sinβi

0

⎞
⎠ +

⎛
⎝ cosβi+1

sinβi+1

0

⎞
⎠

⎤
⎦ × di, i+1

∥∥∥∥∥∥
2

(11)

fk = (∑n
i=1 	Ti

)2 (12)

For the second way, distance to each waypoint on the generated global path as well as nearby obsta-
cles, are considered with the following two penalty functions. Equations (11), (12), (13), and (14) are
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Table III. SMWV autonomous navigation pseudocode

1. if (goal received)
2. run Dijkstra’s Algorithm
3. launch localization algorithm
4. while (goal != arrived)
5. run Timed Elastic Band
6. run driving PID controller
7. convert lin/ang velocity in to turning radius
8. calculate appropriate steering angles
9. run steering PID controller
10. end

combined with Eq. (9) to form the complete multiobjective optimization framework:

fpath = e
(
dmin,j, rpmax, ∈, S, n

)
(13)

fobstacle = e
(−dmin, j, −romin, ∈, S, n

)
(14)

6. Autonomous Navigation Algorithm
The different methodologies introduced in the previous section are combined to enable autonomous
navigation with the SMWV. The user is required to provide a goal pose for the mobile robot within
the map frame. Once a goal is received, the global planner determines the shortest collision-free path
and the localization algorithm begins to launch in the background. The local planner is responsible to
transform the global plan (series of waypoints) into linear and angular velocities that are then sent to the
lower controllers for actuation. Table III summarizes the methodologies into pseudocode to provide the
reader with an understanding of the workings of the vehicle.

7. Modified Position-Based Visual Servoing
Alternative steering configurations are explored to develop a two-stage algorithm called modified
position-based visual servoing (M-PBVS). In this work, the alternative configurations are referred to
as diamond steer (DS) and synchronous steer (SS) and they are illustrated in Position B of Fig. 12.
Beginning with the first stage of the M-PBVS algorithm which is to correct the orientation of the SMWV
using DS. In this stage, the M-PBVS approach utilizes the onboard camera sensor to search for the visual
landmark simultaneously as the SMWV pivot. Once the landmark is detected, a closed-loop orientation
control using purely vision as feedback is deployed until the longitudinal axis of the SMWV is perpen-
dicular to the x-axis of the visual landmark. By doing so, the SMWV does not depend on its odometry
sensors rather just the accuracy of the pose estimation algorithm. The pivot action is illustrated for
Position B in Fig. 12. Once the orientation is corrected, the M-PBVS algorithm enters the second stage
which utilizes the SS configuration. Since the SMWV features a maximum steering angle, δmax, of 30
degrees, two scenarios of control are possible; namely, one with a direct goal and the other with an
alternate goal. The first scenario happens when the approach angle, δapproach, is within the maximum
steering angle such as Positions B and C so the SMWV can directly arrive at the desired. In the second
scenario, the approach angle is greater than the maximum steering angle; as a result, an alternative goal
is calculated to re-position the SMWV in a way that would achieve the direct scenario.

This is illustrated by positions A, D, and E. From there, the proposed M-PBVS controller proceeds to
minimize the position error based on visual feedback. Since the heading angle of the SMWV does not
change during SS, the visual landmark remains within the camera’s field of view during its course. The
next section details the mathematical model and controller design of the proposed M-PBVS algorithm.
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Figure 12. Difference scenarios of M-PBVS.

7.1. System Modeling
The forward kinematics of a two-joint manipulator is used to model the mobile robot system in this
case. By establishing the relationship between different coordinate frames within the manipulator, a
Jacobian matrix is derived to relate the velocity of the end effector with respect to the world, 0

eff V , to the
individual joint velocities

[
θ̇1 ḋ2

]T . This is shown in Eq. (14) where the joint velocities,
(
θ̇1 ḋ2

)
signify

the robot’s angular and linear velocities, θ̇1 respectively. More specifically, represents the SMWV’s
angular velocity during DS and steering velocity during SS as discussed in later sections. This model
restricts the movement of the robot to the x–y plane of the world frame with lateral slip neglected.

0
eff V =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

vx

vy

vz

wx

wy

wz

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

d2C1 S1

d2S1 −C1

0 0

0 0

0 0

1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

[
θ̇1

ḋ2

]
= J

[
θ̇1

ḋ21

]
(14)

7.2. Stage One: Orientation Control
With the kinematics model complete, the next step is to derive the control law for stage one. To
accomplish this, Lyapunov’s control scheme is applied as shown in Eq. (15) where k represents the
proportional gain. The error term for orientation, e(t)w, is the difference between the current and desired
image feature sets as extracted by a pose estimation algorithm. The proposed M-PBVS algorithm
formulates the control law with respect to the desired camera frame; therefore, the orientation error
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term is equivalent to the orientation vector, c
cφ, since the desired orientation is zero. In this work, the

pose estimation algorithm implemented is developed where the output is the position and orientation
estimation of the visual landmark.

e(ṫ)w = −k e(t)w = −k(cd
cφ − 0)w (15)

Moving forward, the derivation of the orientation control law begins with representing the angular
velocity of the camera with respect to the desired camera frame, cd

cw, as the angular velocity of the
camera with respect to itself, c

cw with the help of a rotation matrix, cd
cR.

c
cw = (cd

cR
)T cd

cw (16)

Next, a transformation matrix, T (φ), is applied to convert the orientation expressed in Euler’s angles,
cḋ

cφ, into angular velocities of the camera relative to the desired camera frame, cd
cw.

cd
c w = T(φ)cḋ

cφ (17)

Accordingly, Eq. (17) is substituted into Eq. (16) to form the following.
c
cw = (cd

c R)TT(φ)cḋ
cφ (18)

Since e(t)w is equivalent to cd
cφ; as a result, Eq. (18) is rewritten as below which considers the rate of

the error, e(ṫ)w.
c
cw = (cd

c R)TT(φ) ∗ e(ṫ)w (19)

By substituting Lyapunov’s control scheme from Eq. (15) into Eq. (19), the following control law for
the angular velocity of the camera frame is derived.

c
cw = −k

(cd
cR

)T
T (φ) ∗ e(t)w (20)

Since the SMWV is only pivoting without translation at this stage; therefore, the two joint manipulator
model is reduced to just the revolute joint. As a result, the angular velocity of the SMWV’s base is related
to the angular velocity of the camera as shown in Eq. (21) where, b

cR, represent an identity rotation matrix
because the camera is rigidly attached to the base.

b
bw = b

cR
c
cw (21)

Next, the angular velocity of the base, b
bw, is related to the angular velocity of the base with respect

to the world, 0
bw by Eq. (22).

0
bw = 0

bR
b
bw (22)

Using Eq. (14), the angular velocity of the SMWV’s base frame is described based on the angular
joint velocity, θ̇ , using a Jacobian matrix, Jw, as seen below.

0
base w = Jw θ̇ (23)

By combining Eqs. (20), (21), (22), and (23), the complete law that controls the angular velocity of
the SMWV based on the orientation error is shown below. It is important to note that a pseudo-inverse
for the Jacobian matrix, J+

w , is applied to approximate the inverse kinematics.

θ̇ = −k J+
w

0
bR b

cR
(cd

cR
)T

T (φ) e(t)w (24)

Using differential kinematics, the angular velocity of the SMWV is further expressed in terms of
wheel velocities as shown in Eq. (25).

θ̇ =
[
− r

L

r

L

] [
ωleft

ωright

]
(25)
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7.3. Stage Two: Position Control
Stage two of the M-PBVS algorithm begins with first determining which of the two scenarios the SMWV
is currently in (direct or alternate goal). To do this, the desired position coordinates, (xd, yd), are com-
pared with the current, (x, y) as shown in Eq. (26). The approach angle is then measured against the
maximum steering angle to determine which is larger in value.

δapproach = yd − y

xd − x
(26)

If the approach angle is less than the maximum steering angle then the SMWV is in the direct goal
scenario where the steering angles are set as shown below.

δsteering = tan−1δapproach (27)

If the approach angle is greater than the maximum steering angle, then the SMWV requires an alter-
nate goal which is calculated by finding the intersection between lines extended from the current and
desired positions at the maximum steering angle as calculated by Eqs. (26) and (27). These lines are
represented by grey dash lines in Fig. 12.

current:y = tan (±δmax) x + b (28)

desired:yd = tan (±δmax) xd + bd (29)

By doing so, the alternate goal is guaranteed to be within the achievable steering angle. Once the
SMWV has arrived at the alternate goal, the new approach angle towards the desired goal should be
equivalent to the maximum steering angle; thereby making it a direct goal. It is important to note that
there are two alternate goal solutions at each initial position because of paths calculated based on positive
and negative δmax. To solve this issue, the alternate goal with the shortest distance from its current position
is always selected. For example, alternate goal scenarios in Quadrant 1 and 2 would always result in
the SMWV generating a forward velocity as shown by Position D in Fig. 12. On the other hand, the
opposite is true for alternate goal scenarios in Quadrants 3 and 4 as illustrated by Positions A and E
where the shortest distance requires the SMWV to reverse. Once the direct or alternate goal positions
are either detected or calculated, Lypapunov’s proportional control scheme is applied similarly to stage
one. However, the only difference is that the error term in the second stage consists of two vectors which
are the translational vector, cd

cs, and the orientation vector, cd
cφ. Starting with the latter, the derivation of

the orientation control for stage two is the same as stage one; however, steering velocity, ϕ̇, is used for
SS instead of the angular velocity from Eq. (24). Also, the revolute joint’s angle is constrained by the
maximum steering angle. The following illustrates the steering control law.

ϕ̇ = −k J+
w

0
bR b

cR
(cd

cR
)T

T (φ) e(t)w (30)

where −δmax < θ1 < δmax. On the other hand, Lyapunov’s control scheme is applied to the translational
vector similarly to Eq. (15) for orientation as shown below.

e(ṫ)t = −k(cd
c s − 0)s (31)

Next, the translational vector is represented in terms of translational camera velocity, c
cv, as shown

below.
c
cv = (cd

cR)T c

c
ḋs (32)

From here, the rate of change of the translational vector, c
c

ḋs, is equivalent to the rate of the error as
suggested by Eq. (31). As a result, the translational control law is written as follows.

c
cv = −k

(cd
cR

)T
e(t)s (33)

The above control law is capable of controlling the translational velocity of the camera; however, it
is not complete in the sense that it does not consider SMWV’s base frame. Therefore, rotation matrices
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Table IV. Mobile robot parking pseudocode

1. run Dijkstra’s algorithm //global plan
2. while (!parking_area)
3. run TEB //local plan
4. Diamond steer //enter M-PBVS
5. if (tag_detected)
6. Determine direct or alternate goal scenario
7. Synchronous steer //position control

between the world and camera frame are substituted into Eq. (31) to formulate the translational control
law below.

v = −k J+
t

0
bR

b
cR

(cd
cR

)T
e(t)s (34)

Lastly, the full control law for stage two of the proposed M-PBVS is completed by combining the
steering control from Eq. (28) and the translational control as seen above to form the following where
s(d) is a skew matrix that describes the camera’s position with respect to the base frame.[

v
ϕ̇

]
= −k J+ E L e (t) (35)

E =
[

0
bR 03x3

03x3
0
bR

] [
b
cR s (d) b

cR

03x3
b
cR

]
(36)

L =
[(cd

cR
)T

0

0
(cd

cR
)T∗T (φ)

]
(37)

7.4. Mobile Robot Parking Algorithm
As mentioned previously, a common limitation in recent literature regarding autonomous parking is the
lack of obstacle avoidance and the use of outdated sensors. Additionally, specific coordinates of the
charging station are often required. These two requirements cause fundamental problems since obstacle
and parking station locations can frequently change depending on the environment. To combat these
constraints, the proposed algorithm works in two stages. First, the path planners are utilized to generate
a collision-free path towards the parking area. Once arrived, the SMWV utilizes the proposed M-PBVS
algorithm to correct its pose and reach the desired location precisely. This method allows the SMWV to
plan its path online while specific parking station coordinates are not necessary. The pseudocode of the
proposed mobile robot parking approach is presented in Table IV.

8. Experimental Results
In this section, the proposed algorithm is implemented in the physical model for two different experi-
ments. The first one is denoted as the “Slalom Test” which is intended to evaluate the vehicle’s ability to
maneuver between obstacles in both directions. The second test is denoted as the “Parking Test” which
is intended to evaluate the navigation ability in tight spaces. For the parking test, the overall travel of
the vehicle is less than 0.2 m, however, this is accurate as the purpose of this test is to correct errors in
vehicle pose during parking. Both tests illustrate common scenarios that an autonomous platform would
encounter. The experimental setup and results from both tests are shown below.
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Figure 13. Experimental setup.

8.1. Experiment Set-Up
As previously mentioned, the vehicle is instrumented with a 360-degree laser scanner and IMU for
obstacle detection and localization, respectively. Figure 13 shows the sensor placement relative to the
base frame of the vehicle. The laptop is placed on top of the chassis at the center of the vehicle. The
two experiments are conducted in an indoor environment with flat smooth surfaces and opaque, rigid
obstacles. Due to the placement of the laser scanner at the top of the chassis, a minimum obstacle height
of 0.6 m is necessary for obstacle detection during navigation.

8.2. Slalom Test
Starting with the Slalom Test, the vehicle begins at the origin with a goal at approximately (10, −0.8) in
the map frame. Two barrier obstacles are placed along the way with dimensions of approximately 1.0 ×
0.6 m. Figure 14(a) successfully illustrates the robot’s trajectory as generated by both Dijkstra and timed
elastic band (TEB), around the obstacles towards its goal. The whole navigation took approximately 30
s with the maximum linear and angular velocities constrained to 0.3 m/s and 0.25 rad/s, respectively. In
Fig. 14(b), the desired velocity remained at the maximum velocity throughout the course until the last
5 s where the vehicle slowed down to adjust its pose. Since the desired velocity represents the output
of the TEB local planner, the actual velocity data exhibits significantly more noise as it is obtained
from achieved wheel speeds. Regardless of the noise, it is apparent that the vehicle was able to follow
the path planner commands as the overall trends of both data resemble each other. In the same graph,
the inner and outer wheel velocities are also displayed. In this case, the left and right wheel velocities
zig-zag one another as the angular velocities from Fig. 14(c) are taken into account. In this figure, the
vehicle attempts to clear the first and second obstacle between 0–18 s and 18–28 s, respectively. By
the convention assigned in the experimental setup section, a negative angular velocity implies a right
steer command. With this in mind, it is easy to see that the differential speed from Fig. 14(b) matches
accordingly as outer wheels always exhibit a higher velocity than inner due to turning radius difference.
In Fig. 14(d), the steering angles of the front two axles are illustrated. It is important to note that the rear
steering angles exhibit the same magnitude but opposite in direction (for spacing and clarity, only the
front two-axle steering angles are displayed). From this figure, the maximum steering angle reached is
35 degrees. When looking closer at Fig. 14(d) around 25 s, the vehicle is attempting to steer right after
clearing the second obstacle.

During this, the first axle right wheel exhibits the highest turning angle, followed by the left wheel of
the same axle and then the right and left wheels of the second axle, accordingly. This relationship repre-
sents the Ackerman geometry that was discussed in the previous sections. Figure 15 shows consecutive
images of the slalom experiment with the top row displaying the physical SMWV and the bottom row
displaying the accompanying laser data visualization. This test shows the overall successful navigation
ability of the vehicle in an obstacle-ridden environment using its steering capabilities and arriving at the
destination within a minimal tolerance with regards to both position and orientation.
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(a) (b)

(c) (d)

Figure 14. (a) robot trajectory, (b) linear velocity, (c) front two-axle steering angles, (d) angular
velocities.

Figure 15. Physical experiment (top) and RVIZ (bottom).

8.3. Parking experimentation
To validate the proposed two-stage Parking algorithm, first, the navigation ability of the SMWV is tested.
From there, the proposed M-PBVS algorithm is employed to alleviate any pose inaccuracies. Lastly, the
M-PBVS algorithm is compared with traditional path planning to study the improvements made.
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Figure 16. Autonomous navigation experiment setup.

Figure 17. Physical experiment (top) and RVIZ (bottom).

8.3.1. Autonomous Navigation Test
This test intends to evaluate stage one of the proposed algorithms which is the SMWV’s ability to nav-
igate towards the parking area. To do so, three initial regions that are located throughout an indoor
hallway as seen in Fig. 16 are chosen. The map of the test environment was acquired prior to the exper-
imentation using standard ROS packages, namely the Open Slam implementation known as Gmapping
[40]. During the experiment, the map was loaded and the robot’s initial position was manually defined
prior to autonomous travel. Within each region, three different positions and orientations are randomly
selected as starting poses. From there, all poses are sent to the parking area via Dijkstra’s and TEB
algorithm to account for any obstacles along the way [41,42]. To ensure a proper reset of error, sensor
power is cycled between tests. When looking closer at one of the trials, Fig. 16 illustrates the path plan-
ner’s ability to utilize the onboard sensors to successfully navigate around obstacles towards its goal.
Figure 17 shows consecutive images of this experiment with the top row displaying the physical SMWV
and the bottom row displaying the accompanying laser data visualization. Since the accuracy of the final
achieved pose is of great importance in parking applications, the test is repeated nine times. Taking a
look at the overall trend, Table V tabulates the different starting poses as well as the final achieved poses
with their respective average position and orientation error. From these results, it is evident that Region
1 exhibits the highest amount of drift, leading to the largest deviation of 2.06 m and 0.26 rad between
achieved and desired. Region 3 achieves a more accurate result with a deviation of 0.98 m and 0.19 rad.
The final positions are plotted in Fig. 18, which shows the tolerance window that is calculated by taking
the average error of all final positions. The result is a circle with a 1.5-m radius. Based on the findings of
this experiment, it was concluded that the SMWV can navigate autonomously; however, with an average
position and orientation error of 1.54 m and 0.22 rad, respectively.

8.3.2. M-PBVS Test
With the findings of the previous experiment, the following evaluates the M-PBVS algorithm’s per-
formance in terms of close quarters pose correction. Starting with the experimental setup, all tests
conducted in this section are performed in an indoor lab environment with smooth surfaces. The desired
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Table V. Navigation test results

Reg. Starting (x, y, θ ) Final
(
xf , yf , θf

)
Avg. Pos. Error Avg. Ori. Error

1-1 (–60, 0, 0) (1.85, –1.1, 0.26) 2.06 m 0.26 rad
1-2 (–58, 1, –0.17) (–1.5, –1.4, –0.21)
1-3 (55, 1.2, 0.09) (–1.4, 1.4, 0.30)
2-1 (40, –1, 0.26) (1.63, 1.2, 0.24) 1.57 m 0.22 rad
2-2 (42, 0.5, 0) (–1.3, 0.5, 0.19)
2-3 (44, 1, –0.17) (–0.9, –0.95, –0.21)
3-1 (27, 1, –0.26) (0.8, –0.75, 0.16) 0.98 m 0.19 rad
3-2 (26, –0.5, 0.3) (–0.7, 0.8, 0.21)
3-3 (23, –1.4, 0.09) (0.6, 0.5, –0.19)

Figure 18. Drift results.

position is chosen in front of a visual landmark at (0, 0) with a heading angle of zero as shown in Fig. 19.
Note here that the heading angle, ϑ , is measured relative to the longitudinal axis of the SMWV where
a counter-clockwise rotation is deemed positive. From the desired pose, four quadrants are identified
based on a cartesian coordinate system. When considering the results of the previous experiment as
well as the setup presented here, two sets of experiments are conducted. The first test known as the
M-PBVS Test begins with the SMWV at a position and orientation error that fits within the previously
acquired result. From there, it is the M-PBVS’s responsibility to determine whether it is in a direct or
alternate goal scenario and then subsequently dock the SMWV as precisely as it can. The second test is
called the Comparison Test which studies the performance differences between the proposed M-PBVS
algorithm and the traditional path planner. Experimental data such as trajectory, linear/angular velocity
as well as position and orientation errors are presented.

Starting with the M-PBVS test, position and orientation errors are introduced by placing the SMWV
at position (0.15, 0.9) with a –0.2 rad heading angle in Quadrant 1. As mentioned before, the desired
position is the origin of the cartesian plane with a 0 rad heading angle. In Fig. 20, the initial and final pose
of the SMWV is illustrated on top of the trajectory that is generated by the proposed M-PBVS algorithm.
Beginning with the first stage of the M-PBVS algorithm where an angular velocity is generated to reduce
the heading error with the DS configuration. This velocity is evident during the first 4 s of the test where
it reached a maximum of 0.15 rad/s, pivoting the SMWV clockwise about its center as seen in Fig. 21.
Because of this, the orientation error is reduced to approximately zero as shown in Fig. 22 while both
the linear velocity and position error remain unchanged. Once the orientation is corrected, the SMWV
enters the second stage of M-PBVS which first determines whether it is in a direct goal or alternate goal
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Figure 19. Experimental setup.

Figure 20. Direct goal trajectory.

scenario. Based on the calculation from Eq. (26), the initial position qualifies as a direct goal scenario as
the initial δapproach is approximately 10 degrees which is less than the δmax. Consequently, the generated
steering angles are shown by Fig. 23 which remains between 8 and 10 degrees in a SS configuration
until it arrives at the intended goal. In parallel with the steering control, the linear velocity reached a
maximum of 0.2 m/s before slowly reducing to zero over the next 20 s. Also, the angular velocity is
zero while the linear velocity is negative because the desired pose is set to behind the initial as shown
in Fig. 22 during the second stage. Snapshots of the physical experiment along with the camera’s field
of view are shown in Fig. 24. The result from this test successfully illustrates the M-PBVS’s ability to
correct SMWV’s initial pose to centimeter accuracy as the final achieved position is (0.01, –0.04) which
yields an error percentage of 5.6%.

Next is the Comparison Test which is intended to gain a better insight into the performance difference
between TEB and M-PBVS. This time, the initial pose is located at (0.64, –0.91) within Quadrant 2 with
an initial orientation of –0.28 rad. This pose is chosen such that the M-PBVS algorithm would enter
an alternate goal scenario to avoid showing similar results as the previous test. The trajectory of both

https://doi.org/10.1017/S0263574721001223 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574721001223


1496 Aaron Hao Tan et al.

Figure 21. Direct goal velocity.

Figure 22. Direct goal pose error.

Figure 23. Direct goal steering angle.
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Table VI. Comparison results.

Final pose(
xf , yf , θf

)
Pos. error Ori. error Total distance

TEB (0.23, 0.17, 0.17) 27.31% 60.71% 8.91 m
M-PBVS (0.02, –0.05, –0.002) 4.31% 0.71% 1.85 m

Figure 24. Direct goal test: physical experiment (top) and camera view (bottom).

Figure 25. Alternate goal trajectory comparison.

algorithms is plotted in Fig. 25 where the TEB planner changes the direction of the SMWV a total of
four times while the M-PBVS algorithm generates a path that only requires a change in direction once.
The result of this is a much higher traveled distance of 8.91 m for the TEB when compared to the 1.85
m by the M-PBVS algorithm. Furthermore, the M-PBVS’s efficiency is also prevalent when looking
at Fig. 26 where the position error reduced to zero in 11 s compared to 19 s from the TEB planner.
Also, the final achieved position of the TEB and M-PBVS algorithm is (0.23, 0.17) and (0.02, –0.05),
respectively, which shows that the M-PBVS algorithm is much more accurate at position correction. In
addition, the orientation error from Fig. 27 further validates the ability of the M-PBVS algorithm as
it reduces the orientation error within 3 s with an error of 0.71%. The TEB planner utilizes multiple
turns to correct its orientation yet its final result yields less accuracy than the M-PBVS algorithm with
an error of 60.71%. From both comparison tests in this section, it is evident that the simplicity of the
M-PBVS algorithm achieves higher accuracy and efficiency in both position and orientation correction
when compared with the TEB planner. The following table (Table VI) tabulates the performance metrics
between the two algorithms during this test.
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Figure 26. Alternate goal position error comparison.

Figure 27. Alternate goal orientation error comparison.

9. Conclusion and Future Work
The motivation behind this work is to develop a novel 8WD8Ws SMWV platform that is capable
of autonomous navigation features. As presented, all subsystems of the vehicle including chassis,
suspension, steering, driving, and parking were discussed in detail. Furthermore, the electronics hard-
ware architecture is also presented to permit independent wheel steering and driving. Beyond the
hardware, the necessary software to enable low-level motion control and localization is proposed and
combined with high-level path planners to achieve obstacle avoidance and navigation. For the low-level
control, PID controllers for both speed and steering angles are implemented. Localization is achieved
through an incremental method that combines both the wheel encoders and IMU for position and ori-
entation, respectively. The global and local path planners employed are Dijkstra’s algorithm and the
TEB planner. The results are obtained from physical experiments that include two separate tests that are
designed to study different performance aspects.

From the navigation experiment, the resultant trajectory for one of the experiments is presented to
show the SMWV’s ability in navigating around obstacles towards the parking area. Furthermore, the
developed steering and speed control proved to be fully functioning and able to keep up with the high-
level path planning. To further study the effects of sensor drift, the final achieved poses from nine initial
poses were recorded. The results showed that the arrival position and orientation error are proportionally
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related to the distance between the desired and starting pose. In other words, SMWVs that came from the
farthest initial pose finished with the largest deviation from the desired. By taking all the deviations from
each test, an average error of 1.5 meters was calculated. This error was then represented as a tolerance
window in the form of a circle with a 1.5-m radius.

Based on the drift results acquired from the previous test, the proposed M-PBVS algorithm must
be able to bring the 1.5 m, and 0.22 rad tolerance down to within 10 cm and 0.05 rad, respectively, to
ensure successful parking. For the first experiment, the M-PBVS algorithm achieved a final position and
orientation error of 5.78% and 1.07%, respectively which translated to a position error of approximately
7.20 cm and an orientation error of 0.003 rad. In the second experiment, the proposed M-PBVS algorithm
was compared with TEB to evaluate its performance upgrades in pose correction. The results showed
that the M-PBVS algorithm was far more accurate and faster than TEB at close quarters pose correction.
This was because the M-PBVS algorithm utilized a visual landmark to correct its pose effectively in a
two-stage manner while the TEB algorithm is constrained by the SMWV’s minimum turning radius. As
a result of these limitations, the M-PBVS algorithm traveled nearly 7.06 m less than the TEB equipped
SMWV. In addition, the M-PBVS algorithm repeatedly scored a higher accuracy as presented by both
its position and orientation error percentage when compared with the TEB’s. These results validated the
benefits of the M-PBVS algorithm as it was able to capitalize on the mechanical design of the proposed
SMWV platform.

For future analysis, an enhanced control scheme in addition to position-based analysis will be lever-
aged. This will allow for better performance with rugged terrain and other more complex environments.
This will allow for the full capabilities of the 8WD8WS vehicle to be showcased as its real-world coun-
terpart rarely finds itself being used on roads or other basic conditions. In addition, more robust sensor
fusion using an Extended Kalman Filter will also be investigated. Overall, the SMWV platform was
successfully developed and validated.
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