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Abstract

Mobile robots are rapidly becoming the ideal choice for exploring

areas that are difficult or deemed too dangerous for humans to access.

The task of mobile robot exploration can be modeled as the problem

of selecting the next pose for exploration. A technique called map

inference could potentially increase the efficiency of the pose selection

problem as it uses known information provided by the robot to predict

the surrounding unknown regions. The benefits of map inference are

demonstrated in computer simulation as well as ROS simulation. In

a structured office environment, the algorith showed an average 51%

increase in available information, while having an accuracy of 78%.

In a 3d, unstructured environment, the algorithm showed an average

48% increase in available information, while having a free and obstacle

precision of 62%. This leads to a 36% decrease in total exploration

time, as well as lead to a 45.37% decrease in total travel distance. The

results of this algorithm have the potential to be utilized in search

and rescue operations, resulting in a reduction of search time and

facilitating the quicker identification of victims.
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1 Introduction

Mobile robots are often used to explore and survey areas that are difficult for

humans to access, such as mountainous terrains, caves, or disaster-stricken

zones. Equipped with sensors such as lasers and cameras to gather data, mo-

bile robots have become the ideal choice in many exploration tasks such as

space exploration[1], search and rescue[2], and self-driving vehicles[3]. There-

fore, the study of exploration algorithms has been a prevalent topic of robotic

research.

The task of mobile robot exploration can be modeled as the problem of

selecting the next pose for exploration. A good pose-selector would be able to

choose the optimal position for the robot to explore next. This would make

the robot increase coverage and to explore the unknown environment in a

quick manner. This problem can then be further divided into sub-problems,

such as selecting all poses of potential interest, determining the pose that is

likely to gain the most reward, and in the case of multiple robots, how to

settle disputes between conflicting objectives. Several algorithms exist for

this pose-selection problem[5-10, 13-21], however there are many flaws such

as inefficiencies in multi-robot coordination, poor estimate of pose rewards,

and many others discussed in the Literature Review section.

The task of mobile robot exploration is further complicated when the

need arises to deploy multiple robots. Multi-robot systems are desirable in

certain situations as they can be built much smaller and lightweight compared

to single robots, can explore more terrain in a given time frame, and can

introduce an entire new set of strategies, such as sending a sacrificial robot to

explore an area that is interesting but dangerous[4]. Currently, there are two

main frameworks for controlling multiple robots, which can be classified as

centralized[5] or decentralized[6][7][8]. These frameworks then can be further

divided into classical or learning-based. The focus of this paper will be

mainly on multi-robot, decentralized and classical approaches, however other

methods are mentioned and critiqued in the Literature Review section.
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One way to address to pose-selection problem is to use map inference,

which is the approach that this report will take. Map inference algorithms

uses the information that is obtained from robot sensors to reconstruct a cost

map of the areas that it has already explored. It then uses this information

to predict the terrain and structure of the surrounding unknown regions.

Although there has been some prior research on map inference, this is still a

largely untouched area of study. Previous work on map inference[9,10] has

mainly focused on using visual features to recognize similar map segments

between the current area under exploration and a library of fully explored

map segments. This approach tend to be problematic because visual features

of different map structures can be similar, leading to ambiguity in matching.

Furthermore, these methods are computationally intensive and impractical

in large-scale applications.

An efficient solution to the pose-selection problem has many significant

implications, as it would allow multiple robots to search an unknown envi-

ronment and identify objects of interest, for example victims in a disaster,

with quicker time and less travel cost. Currently, the team that I am a part

of is developing several algorithms for map-inference. We seek to replicate

the results of several state-of-the-art algorithms as a benchmark[11-13], and

also to develop a new algorithm that uses deep reinforcement learning to

compare against the previous results. The goal of my research is to replicate

an existing classical method for map-inference, and to compare this method

against state-of-the-art algorithms. This report will include a literature re-

view of the related background research, the methodology behind my choice

of algorithm to implement, as well as results of the algorithm.
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2 Literature review

This section will examine previous research in robot exploration and map

inference, to show the limitations of current state-of-the-art papers, and select

an algorithm for implementation.

2.1 Exploration algorithms

It was stated previously that robot exploration can be structured as solv-

ing the problem of which pose to select next for exploration. Having said

that, not all robots use advanced algorithms for exploration, as demonstrated

by commercially available robots like robotic vacuum cleaners which often

employ the random walk algorithm[14]. This algorithm involves the robot

moving in a straight line until it encounters an obstacle, then it would change

its direction and the process is repeated. Evidently this algorithm is not very

efficient and does not take full advantage of the data available. The concept

of intelligent algorithms for exploration was first introduced by the Yamauchi

paper[15], which proposed a frontier-based exploration algorithm. A frontier

is defined as the boundary between known and unknown regions. A robot

would first identify these frontier regions, and then it would be assigned the

closest frontier point to explore. This process is repeated until the area has

been fully explored or a new frontier becomes more accessible. This method

is not efficient as it does not guarantee an optimal frontier to explore. In ad-

dition, this approach cannot be used in multi-robot exploration as it would

lead to all robots converging onto a single goal. Market-based approaches,

such as [16], have been deployed to coordinate the actions of the team with

some levels of success. These approaches aim to optimize the balance be-

tween maximizing the rewards and minimizing costs, such as travel distance.

They then select the pose with the largest overall benefits. However, while

the cost of travel can be easily quantified, determining an exact metric for

the rewards of exploring each pose is an ongoing area of research.
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There have also been papers published on the subject of using the in-

formation gain to predict the reward of each frontier pose. Methods based

on information-theory such as those outlined in references [17] and [18] have

been shown to be effective in determining the potential information gain

of each frontier location. The first paper mentioned above employs Rao-

Blackwellized particle filters, where each particle represent a different trajec-

tory that the robot could have taken. Each trajectory is then assigned an

estimate of the potential information gain if the robot were to follow that

path. Since unknown areas of the exploratory space has more entropy than

known areas, the selected trajectory should reduce the entropy of the sys-

tem to the lowest level, as this is considered equivalent to the most amount

of information gain. The second paper utilizes mutual information to de-

velop frameworks that approximate the information gain given by robots

equipped with range-only sensors, as well as approximate representations of

the costmap using the those sensor readings. Although both of these papers

have good experimental results, their flaw is that they are only selecting the

frontier points from areas that have already been observed. If the algorithm

can predict the map structure of the unobserved environment with a high

degree of certainty, then it can select frontier points in the unexplored regions

of the environment. This would increase the efficiency of the robot as it is

selecting frontier points with even more information gain. This technique,

called map inference, is the main focus of this paper and is further discussed

in detail in the Map Inference Section.

2.2 Multi robot exploration

Currently, there are two main frameworks for controlling multi-robot systems,

which can be classified as centralized[5] or decentralized[6][7][8]. Centralized

controllers are superior in terms of the speed of exploration and the total

area covered than decentralized controllers, however it relies on perfect com-

munication between robots themselves, as well as perfect communication
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between the robots and the central controllers. In practical applications,

these controllers experience a significant decline in performance due to issues

such as communication dropout or the failure of any individual robot[19]. In

contrast, a decentralized system does not have an overarching network that

oversees the entire system. Instead, each individual is acting on its own, rely-

ing on local communication of information. This approach may have poorer

performance however it does not have a heavy computation load, and is also

more resilient and robust to real-life considerations.

There are many control architectures for decentralized multi-robot explo-

ration, ranging from classical approaches to learning-based approaches. Clas-

sical methods are are rule-based algorithms that uses hand-crafted heuristics

that exploits certain properties of the environment. They have been the dom-

inant method used in the past for their fast speeds and great performances

in specific scenarios, however they can perform poorly in more generalized

scenarios[20]. On the other hand, recent published papers have been increas-

ingly utilizing learning-based methods, which are more versatile and can be

applied to a wider variety of environments[21]. The main focus of this report

will be on decentralized and classical approaches.

2.3 Map Inference

Map inference is used in robot exploration algorithms because if a robot can

infer information about the unexplored portion of the map using the observed

knowledge, then it can set up frontier points in the unexplored regions, which

will increase the overall efficiency and speed of the exploration process.

Early contributions to the field include [9], which employs a Bayesian

model to anticipate unexplored regions of a partially explored map, based

on a library of maps that have already been fully explored. The algorithm,

referred to as predictive-SLAM, selects a map from the library if it is similar

enough to the current map, and the robot can use this predicted structure

as a virtual mapping and determine frontier points. Another study [10] also
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employs a library of map structures to anticipate the current unexplored

regions, but it attempts to identify loop-closures that the robot might en-

counter during exploration. This method uses a bag-of-words technique that

identifies all possible matches that can be added to the map by comparing

distinct visual features, then the best matches are merged onto the robot’s

current map using random sampling consensus. Although these two papers

are successful at producing good experimental results, their methods of us-

ing visual descriptors of the environment is inefficient because vastly different

map structures can have similar visual descriptors, which leads to ambigu-

ity in matching. Additionally, these algorithms do not work in real-time, as

comparing images is a computationally intensive task. To compensate, the

algorithm would either compare enough images to produce an accurate result

but run slowly, or it can compare fewer images and yield a less satisfactory

outcome. Both options are not desirable.

2.4 Concept Selection

The team I am part of is currently working on a project that has three main

papers of interest [11-13], the first paper being is a distributed map-inference

algorithm, which is the main focus of this report. It is a classical algorithm

that uses laser-based comparisons which are faster computationally and also

less ambiguous than visual comparisons. The second paper employs neural

networks that can anticipate the unknown regions of a partially explored

map. It also incorporates some classical, information-theoretic techniques

to improve the efficiency of the exploration process. The third paper uses

a deep reinforcement reinforcement learning approach. The algorithm in-

volves a centralized and a decentralized network during training phase, and

only uses the decentralized network during testing phase. My thesis advisor,

who is the author of this third paper, is working on an improved version of

the deep reinforcement learning algorithm. The plan is to use the first two

papers, which is the current state-of-the-art for classical and learning-based
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approaches respectively, as a bench-mark to compare the third approach

against. Although it is expected the third method will be superior, there

are still reasons why a classical method is a worthy comparison. Classi-

cal methods can work well during specific situations where the features of

the environment is exploited and the heuristic is closely tailored to fit that

environment. They are also faster to implement than learning-based algo-

rithms. Lastly, learning-based algorithms tend to perform inadequately on

map structures that they were not trained on. The following section explains

the methodology of the classical, distributed map-inference algorithms, and

then the results of preliminary trials are presented.
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3 Methodology

3.1 Inferencing Algorithm

Before the distributed inference algorithm is described, some definitions must

be introduced. The environment can be represented by a 2-D costmap, where

each cell can have only one of 5 states. Observed-Free, Observed-Obstacle,

Inferred-Free, Inferred-Obstacle, and Unknown. A cell is considered Ob-

served when the robot uses its sensors(laser, camera, bump) that detected

and identified the cell to be free or occupied. A cell is considered inferred

when the algorithm determines the cell to be free or occupied not by ob-

serving it, but by predicting it using known information. All other cells are

considered Unknown.

Firstly, a sparse 360 degree laser scan is performed at a desired location,

p, on the costmap. How this location is exactly chosen is described in section

3.2. The laser scan is represented by an array of 360 numbers, where each

number is the Euclidean distance between p and the first encounter of an

obstacle cell, starting at 0 degree and incrementing by 1 degree. The laser

scan is then compared to a library of fully-explored map structures, and the

best matched library map-structure is determined using maximum likelihood.

The library of map-structures was taken from [22] of the MIT campus.

For laser scan s and library scan li, the mean and standard deviation for

both scans are calculated as µs, µl, σs, and σl respectively. The following ap-

proximate cumulative normal distribution function is introduced for it would

be used later in the algorithm.

where
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Then, for a laser scan s and a library scan li, we have two arrays to

compare against each other. Denote each individual beam of the array as sj

and lij respectivey, the probability that a random beam in s being generated

by library beam li is given by

where

Note that as γ approaches 0, P (sj = lij) approaches 1. Using this, the

total probability that the map structure li has generated s is given by
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Logarithm is used for faster computation. Library entries that have ex-

ceed a certain user defined threshold will then be merged onto the current

environment. Here is a control diagram describing the general architecture

of the algorithm.

A more detailed example is given below.
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In this scenario, a partial map is presented, and the objective is to predict

the structure of the grayed out areas in the map.

A desired location on the partial map is chosen for performing a laser

scan, which is marked by a red rhombus.
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A sparse 360 degree laser scan is performed. Notice the similarity between

the room where the red rhombus is located and the laser scan.

Now a search through a library of previously recorded map structures

was conducted. It was found, through the maximum likelihood evaluation

criteria above, that the laser scan below has the closest match to the laser

scan above

The map structure is then merged onto the existing environment. The

results of which can be seen in section 4.1.
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3.2 Choosing Points for Laser Scan

This section explains the methodology behind how to choose a point for laser

scan. It was found through trial and error that the desired point should have

surrounding obstacles, since an open area or an unknown area would return

no laser scan. In order to achieve this, the map is first blurred. The blurring

process combines the free and obstacle cells in the map by smoothing them

out, resulting in a more averaged representation. Then, the average value

of the map is calculated, and the difference between the average value and

the value of each cell is taken. The conjecture is that the closer the value

is to the mean, the more likely it is to be between obstacle cells. The cells

below one standard deviation are chosen(as shown in yellow), and a point is

randomly selected to be used for laser scanning.

3.3 Choosing Frontier Points

Once the predicted map has been obtained, it remains to select frontier points

on the map used for exploration. The choosing of frontier points would use

the available occupancy grid of known cells, as well as the newly predicted

costmap to make a selection. A score map is created using these informa-

tion, such that each individual cell is given a score, prioritizing Inferred free

cells and Unknown cells; Observed free cells have lower score, and Inferred

Obstacle and Observed Obstacle cells have no score. Blurring is done on the
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score map for averaging purposes, and the top scoring cells are more likely

to be selected for exploration.

For the example above, based on the partial map information, the pre-

dicted map is shown on the top right. The blue colour represents Known and

Inferred Obstacles, the purple represents Known and Inferred Free cells, and

the yellow represents the Unknown. The score map is shown on the bottom

left, where a brighter colour means a higher likelihood to being explored.

Notice that in this case, the brightest area, which is the area that is most

likely to being explored, was not observed by the robot prior to inference.
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Selecting a point beyond the observable area offers higher potential reward

by reaching that location.
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4 Results

To assess the performance of the algorithm, two sets of computer simulation

as well as two ROS simulation was conducted. The first computer simulation

and ROS simulation was done the Aydemir data set[22], which is a library of

2D office building floor plans. The second computer simulation as well as the

ROS simulation was conducted on a custom, 3D unstructured environment.

4.1 Computer and ROS Simulation - 2D

The 2-D simulations were mainly done as a proof of concept, to see if we can

obtain the same results as the authors of the algorithm had[11]. Partially

explored maps were taken and the structures of the unknown areas was pre-

dicted upon. The results below was obtained from conducting experiments

on 200 different partial map environments.
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Accuracy 78%

Generous accuracy 83%

Obstacle precision 10%

Obstacle recall 13%

Obstacle generous recall 14%

Free precision 92%

Free recall 84%

Free generous recall 89%

Accuracy represents the number of correctly predicted cells, both Free and

Occupied. Obstacle precision refers to the proportion of the predicted ob-

stacle cells that were actually true obstacle cells, and free precision is the

same but for free cells. Recall means how much new information was gained.

Any evaluation criteria with the word generous means it was computed in

proportion to the known cells, instead of the total number of cells. Since

the number of known cells is always less than the total number of cells, this

value will always be greater than its non-generous counterpart, hence why it

is referred to as generous.

The algorithm on average has an accuracy of 78%, with an obstacle cell

precision of 10%, obstacle cell recall of 13%, free cell precision of 92%, and

free cell recall of 84%. Free cell precision and recall is high due to the nature

of the environment, which consists of mainly office buildings. Since there are

more free space as opposed to obstacle space, the metrics are biased towards

free cell accuracy but lacking in obstacle cell accuracy. It should also be

mentioned that the free precision is very similar to the results of 95.1% that

was obtained in the original paper[11].

Since the initial proof of concept proved promising, we moved onto a

simulator in ROS. While the robot is traversing an unknown environment,

the predictions made by the robot is shown below. The black lines indicate

the map structure inferred by the algorithm. The simulation proved that the

map-inference algorithm decreased exploration time by 10%.
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4.2 Computer Simulation - 3D

Since the initial 2D tests showed promising results, the project has been ex-

tended to 3D, unstructured environments. Unlike 2D environments, where

obstacles and free space can be represented in binary, 3D environments are

represented by images. The x and y coordinates are represented by the array

of the image, and the pixel intensity of the image represents the height. The

task of finding the best matched map structure can be then formulated as

finding the image matches the current environment most accurately. There-

fore, this is very similar to an image-recognition and object detection prob-

lem. However, typical image matching techniques such as SIFT and ORB

cannot be easily applied in this scenario, since they both use local descriptors

for object identification. One problem that often arises with the use of local

descriptors is that the SIFT or ORB algorithm will often find a local feature

that matches, however it does not match on a bigger scale (See the image

below). Therefore, this method proves invalid in the inference process in

that it could not find a map structure that is similarly enough to the current

environment.

In such a situation, the algorithm above could actually be used to find

a good match for map inference. The height map can be approximated by
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taking all heights that are traversable as ”free cells”, and all heights too tall

for the robot as ”obstacle” cells. A laser scan can then be emitted, and a

similar map structure could be found. Inadvertently, the above algorithm ac-

tually provides an alternative image-recognition technique, however its scope

is limited in that it can only work in situations where the image in question

can be converted into binary form.

The 3D computer simulation uses the same technique as the 2D computer

simulation. A laser scan is performed on a partial map, and that scan is

compared against a library of laser scans. Maximum likelihood is similarly

used to determine the best map structure, which will then be merged onto

the current environment. 120 trials were conducted, and the results of the

3D computer simulation are given below.

Accuracy 41%

Generous accuracy 54%

Obstacle precision 63%

Obstacle recall 57%

Obstacle generous recall 63%

Free precision 61%

Free recall 39%

Free generous recall 70%
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The results of these trials are different from the 2D computer simulation

mainly due to changes of the environment. The 3D, unstructured environ-

ment has roughly an equal amount of free and obstacle cells, where as the 2D

environment is mainly free cells. This bias toward free cells is what caused

the precision of free cells to be so high, and why the precision of obstacle cells

is so low. The accuracy of the 2D computer simulation is therefore higher

mainly due to the high precision of the prediction of free cells. However, in

the 3D environment there is no obvious bias towards either free or obstacle

cell, that is why the precision for obstacle and free cells are similar.

Although it may seem that the algorithm does not perform quite well for

the 3D unstructured environments, a large part of that is due to the flaws of

the evaluation criteria. Accuracy, recall and precision are standard ways of

measuring how well a map-inference algorithm performs, and it is also what

the original authors had used. Nevertheless, the evaluation criteria is binary

in nature, in that the algorithm will either predict a cell as free or obstacle,

and nothing in between. Yet in reality, the algorithm returns not a binary

value but rather a probability distribution of how likely the cell is to be free

or occupied. This value is then separated using a threshold to be either

free or obstacle. A better evaluation function would be a probabilistic based

function which takes into account that each cell has a non-binary value.

It is also desirable, for exploration purposes, to have a high precision in

both free and obstacle cells. It is not desirable to have one being high and the

other being low. A high precision in free cell but a low precision in obstacle

cell would result in situation such as having unplanned obstacles blocking the

way of the robot. A low precision in free cell but a high precision in obstacle

cell could result in the robot being stuck in one place because it predicts it is

surrounded by many obstacles. For the results of the 3d unstructured envi-

ronment, although the individual precision is lower compared to structured

environments, they are very similar to each other, and are larger than 50%.

This means that a portion of the unknown environment is being predicted

25



correctly that the exploration process can take advantage of while selecting

frontiers. As demonstrated in the ROS simulation results, even with not

so high precision, the algorithm can perform better than naive methods for

frontier exploration.

4.3 ROS Simulation - 3D
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ROS simulation was also conducted on the 3D costmap. The performance

of the map-inference exploration method was compared with that of the naive

frontier exploration method to demonstrate its superiority. It was found that

the map inference method decreased exploration time by 36%, as well as lead

to a 45.37% decrease in total travel distance.
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The exploration algorithm converges if the robots combined have explored

85% of the environment. The convergent rate for a non-inferencing robot to

completely explore an environment is typically linear, while the convergent

rate of the inference robot has a sharp increase in the middle due to inferring

a frontier point with a large reward. The inference robot image below shows

a trial run where the robot had predicted a frontier point on the other side of

the map, therefore resulting in a significant reward gain, and the exploration

algorithm converged when the robot only had to explore 9 distinct positions.

In contrast, the non inferencing rate of convergent is much slower, as it

iteratively finds frontier points only near its vicinity and does not infer the

unknown area. Hence why it shows a more gradual convergence.

Although this result is better than the performance of the original paper

of 13.15% decrease in total travel distance, several things must be taken into

consideration:

First of all, the inferenced area was very large compared to the total area

of the environment. This means that in some situations, a robot would find

an inferenced frontier point with a very large reward. The original authors
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had much larger map sizes compared with our own, and the inferenced area

is much smaller. Therefore, since the robot only infers a smaller area, the

reward of its frontiers are smaller. Additionally, the ROS simulation was done

on a computer, while the original authors of the algorithm had conducted

hardware trials. Hardware trials are much more prone to error, as real life

consideration such as sensor noise, speed of computation of algorithm, and

conflicting robots could potentially increase the exploration distance.

5 Conclusion

The main algorithm implemented in this paper is the map inference algorithm

defined by [11]. It has been shown through computer simulation that it is

possible to predict the unknown areas of the environment with the known

information. Additionally, the efficacy of the proposed map inference method

has been demonstrated through ROS simulation. The result is a 36% decrease

in exploration time, as well as a 45.37% decrease in total travel distance.

Several drawbacks of the algorithm should be noted. One of the funda-

mental limitations of using a library of map structures is that it is difficult

to generalize to a completely new environment. Although the original pa-

per[11] claims that any environment can be approximated by the library of

map structures, the results of this paper shows that it cannot be done as

effectively. In addition, the algorithm requires preexisting map structures to
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be loaded for it to run, which could increase the overhead to the runtime of

the exploration process.

The implementation of this algorithm is expected to be bench marked

against algorithms which the team I am a part of will also create. Although

it is expected that this algorithm will not reach the efficiency of machine

learning algorithms, there are still advantages to this algorithm. It is can

be implemented much quicker than any machine learning algorithms, and is

comparable in run time to machine learning algorithms. Machine learning

algorithms also tend to run into over-fitting problems, which is non-existence

in this classical, map inference algorithm. In niche areas that do not have the

hardware necessary for machine learning, this algorithm offers an alternative

solution to map inference and robot exploration
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