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Abstract 
As the population ages, there is an increasing demand for support with activities of daily living 

(ADLs) in the homes of older adults and in long term care. Socially assistive robots (SARs) have 

shown success in increasing ADL independence by providing adaptive assistance for a variety of 

tasks including eating and dressing. The objective of this thesis is to develop new technologies for 

improving the design of SARs for ADL assistance. Namely, this thesis develops: 1) a novel social 

robot and wearable sensor system for assisting with the ADL of dressing, and 2) a new deep 

learning ADL recognition architecture for autonomously recognizing and monitoring known and 

unknown ADLs. Experiments evaluate performance using classification accuracy and real-time 

functionality using metrics such as usefulness and reliability. Results for classification 

performance show the developed methods outperform existing work while interaction experiments 

validate the systems for use with a variety of diverse users.  
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CHAPTER 1 

1. INTRODUCTION 

1.1 Background 
An increasing number of adults globally are requiring assistance to complete activities of daily 

living (ADLs), fundamental tasks required to care for oneself including personal hygiene, eating, 

and dressing [1]. Difficulties in completing ADLs can occur due to mild to moderate cognitive 

impairments [2] or functional limitations [3] which are known to increase with the overall aging 

process [3]. By 2050 the population of adults 60 years of age and older is expected to double to 

2.1 billion, and those 80 and older to triple [4]. The resulting increase in older adults who require 

support to complete ADLs will cause a greater number of older adults needing to transition to 

living in long-term care (LTC) homes, which provide 24-hour onsite professional care to support 

their physical and cognitive needs [5]. Consequentially, the demand for an already dwindling 

healthcare system is expected to grow substantially [3] with an estimated caregiver shortage of 

more than 100,000 workers in the US alone by 2030 [6]. This lack of staffing combined with a 

new environment can lead to individuals feeling isolated from social circles, often worsening 

existing conditions such as dementia [7] and decreasing overall quality of life (QoL) [8]. There 

exists an urgent need for innovation in ADL assistance to improve quality of life and overall 

wellbeing, and to help address the strain on the labor force, and the various needs of a diverse 

aging population [9]. Solutions must be multifaceted, adaptive, and sustainable, and need to be 

supported by government policies and programs that also consider socioeconomic factors that 

affect health to meet both urgent and future older adult care needs.  

A proposed care method to assist with ADLs while maintaining QoL and independence is 

reablement [10]. Reablement is a person-centered approach for gaining or regaining skills required 

to complete ADLs [10]. It consists of goal-directed rehabilitation interventions in which caregivers 

encourage and motivate individuals to expand their capabilities through coaching [11]. This 

strategy moves caregivers away from the “do for” norm (i.e., doing the ADL for the older adult) 

to the “do with” approach (supporting the older adult as they complete the ADL) [12]. Deployment 

of reablement programs have shown significant improvements in health and ADL ability in 

addition to decreased care costs for a variety of individuals including older adults [13], [14] and 
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stroke patients [11]. However, the global shortage of caregivers has limited the implementation of 

these programs [15], and assistive technologies have not yet been incorporated. In addition to 

challenges associated with cognitive and physical decline of older adults, assistive solutions must 

be accessible for users who are novices in newer forms of technology [16]. 

1.2 Socially Assistive Robots 

Socially assistive robots (SARs) are a unique type of robotic technology that use social 

communication modes to engage with people [17]. SARs have the potential to aid caregivers by 

assisting older adults in the completion of ADLs and assessing changes in ADL ability over time 

all in a single multi-facet technology [18]. The unique ability of SARs to adapt their behaviors to 

older adults can help support their individual needs and preferences as they age, making SARs 

especially well-suited for reablement care [19]. This adaptability combined with the potential 

efficiency of SARs to help advocate for appropriate caregivers-to-older-adults ratios in LTC 

homes aligns with policies aimed at meeting the health and social needs of older adults created by 

a shortage of caregivers in order to provide personalized quality care [20]. 

Existing work has used SARs to assist older adults with a small number of ADLs including 

dressing recommendations [21], exercise [22], or meal eating and cognitive games [23]. Crucial 

to having positive human-robot interaction (HRI) experiences in older adult care settings is the 

overall design of the robot, considering the unique challenges and opportunities that come with 

novice users in specific task and environment contexts [24]. SAR design includes aspects of 

physical appearance, interaction modes, and behaviors. Studies on SARs for assisting older adults 

with ADLs have found user preferences exist for each aspect of the design however there exist 

design features that remain either underexplored, underdeveloped, or both [25].  

1.3 Challenges 
There are several open challenges to designing SARs as effective long-term ADL assistants for 

older adults. These challenges include both design decision challenges (e.g., how to determine 

what the robot should do) and technology development challenges (e.g., enabling the robot to do 

something it cannot currently do).  
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1.3.1 SAR Physical Features and Interaction Modes 

Individual user preferences need to be considered in the design of SARs, while maintaining 

feasibility for mass production and deployment. SARs can range in such appearance characteristics 

as human-likeness, size, expressiveness, and material composition. Interaction modes include 

social interactions via verbal and non-verbal communication, gestures, displays, and physical 

touch. A mixed-methods approach in [26] used a combination of questionnaires, interviews, and 

focus groups to determine the older adult expectations towards a hypothetical SAR for everyday 

assistance. Questions on preferred height, exterior finish, and favorite overall appearance (from a 

list) showed no one option was most preferred. Additionally, older adults expressed their desire to 

understand the functionality of the SAR before forming an opinion on its appearance.  

Accommodating preferences is important in HRI as personalization increases engagement and 

enjoyment, having a positive impact on overall use by older adults [27]. Existing SAR designs for 

older adults have shown significant differences in appearance and interaction modes even when 

robots perform the same task [17], [25], [28] suggesting diverse expectations have challenged SAR 

developers to optimize robot design. In accommodating such preferences there is a risk in 

underrepresenting the diversity of users including of racial, cultural, gender, and age minorities, 

which can create inherent biases, i.e. similar to some medical voice dictation systems being more 

accurate for men than women [29]. The complexity of this challenge is increased by the changes 

in behavioral and attitudinal response when comparing those that directly engage in HRI with 

physically embodied robots to those who are asked their opinions on images or videos of SARs 

[30]. Researchers must determine which features are important based on user abilities and 

interaction context, while ensuring SAR accessibility to a broad and diverse userbase of older 

adults. Additionally, the development of new modalities (e.g., use of wearable sensors for motion 

tracking) remains an open technical challenge. 

1.3.2 The Need for SAR Adaptable Behaviors 

SAR behaviors can encompass varying strategies from emotional [31] to persuasive [32], while 

also considering social norms [33] to engage with older adults. An open challenge exists to adapt 

robot behavioral strategies to achieve the expectations of older adults and gain user trust and 

adherence [34]. Focus groups of older adults in [35] were presented with an imaginary scenario 

that put in conflict adherence to SAR recommendations to promote independence and older adult 
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autonomy in disobeying the SAR suggestions. The study highlighted the expectations for SARs to 

have adaptive behaviors that consider user emotions and engagement as well as long-term user 

patterns in schedules and moods. Designing behaviors to consider social norms presents challenges 

in determining which cultures to consider. Caution must be taken to avoid ageist views of selected 

norms [36]. Beyond potential demographic biases, ethical concerns in developing SAR behaviors 

for older adults include: 1) privacy over recording user data to influence behavioral adaptation, 2) 

transparency of SAR intent, and 3) user autonomy in situations where a SAR attempts persuasion 

[37]. 

Development of adaptive behaviors requires training of learning methods to [38]: 1) detect and 

classify user state, 2) determine an appropriate SAR behavior, and 3) learn from user responses. 

Advancements in AI including machine and deep learning (DL) methods can improve the 

robustness of SAR behavior adaptation frameworks to changes in older adult behaviors overtime 

[39], which may occur due to cognitive decline [40]. Recently deployed SARs with adaptive 

behavior frameworks are yet to offer a holistic solution that both synthesizes a wide range of 

available data on the user state and applies this data to modify behavioral strategies accordingly 

[38]. The combination of inter-group and intra-user variability requires SAR behavior adaption 

that considers user preferences and cognitive changes while maintaining reliable task performance.  

1.3.3 Intelligent Autonomy 

Current deployments of SARs in senior care vary in their control architectures from teleoperation 

scenarios [27], where a human operator (visible or non-visible to the users) must be present, to full 

autonomy [25], where a robot is capable of HRI without expert human intervention. For long-term 

use, autonomy is the only sustainable option and to be achieved SAR architectures need to directly 

incorporate user(s), robot, and task environment information. For older adults, cognitive decline 

can decrease their ability to express thoughts using typical sentence structures [41] or facial 

expressions [42], limiting the use of standard natural language processing (NLP) and facial 

expression detection methods for interpreting user state. To account for the inexperience of older 

adults with robotics, SARs must provide alternate means of maintaining core functionality in the 

presence of hardware failures such as leveraging multimodal interaction modes using sensor fusion 

techniques [38]. 
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Although historically robots in manufacturing only needed to be proficient in a single repeated 

task in a structured environment [43], autonomy for SARs in senior care is further complicated by 

the multiple tasks older adults expect them to reliably perform [44],[45] in diverse environments 

from kitchens to bedrooms in private homes [46] to common dining and recreational rooms in LTC 

[47]. SARs applications need to handle high environment variability and learn to adapt to their 

users’ abilities and needs, while dealing with sensing uncertainty or unpredictable human behavior. 

1.3.4 Challenges Summary 

Designing SARs to assist individuals with ADLs includes design features of physical appearance, 

interaction modes, and behaviors. Physical appearance has been shown to be responsible for a 

variety of HRI outcomes, presenting a challenge in determining its relative importance to different 

users, activities, and scenarios [48]. Interaction modalities must be easy to use for individuals who 

are novice users of technology and several types of interaction modalities for social robots have 

yet to be developed. SAR behaviors should be adaptable to improve both the user intent to use and 

overall task performance. Intelligent autonomy for SARs must be robust to variations in users, 

different activities, and diverse environments to enable long-term use. 

1.4  Thesis Objective 

The objective of this thesis is to design, develop, and test autonomous social robots for ADL 

assistance. For SARs to successfully act as long-term helpers for individuals requiring ADL 

assistance, they must be easy to interact with, adapt their behaviors to suit user preferences, and 

be capable of autonomously observing and acting on user behaviors to initiate assistive HRI. To 

consider each of these challenges, the objective of this thesis is two-fold. Namely, this work 

focuses on the development of two unique SAR architectures: 1) a social robot wearable system 

for dressing assistance, developing a novel smart clothing interaction modality and assistance 

approach using adaptive SAR behaviors for the ADL of dressing, and 2) a new multimodal DL 

architecture for SARs to autonomously recognize and monitor multiple ADLs performed by 

different users in diverse environments and proactively initiate assistive HRI. 

To enable a novel smart clothing for user motion monitoring, resistive strain sensors are 

developed using a unique manufacturing process. Processing of the sensor signals from the smart 

clothing is accomplished using a series of DL networks to map user motion to user joint angles 

and user joint angles to specific dressing steps (e.g., put right arm through, button up). A SAR 
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behavior adaptation module is developed to provide social assistance to the user as they perform 

the dressing activity and modify SAR behavior using a MAXQ reinforcement learning (RL) 

architecture with the reward of user compliance and engagement. Experiments are conducted to 

assess the quantitative performance of each module in addition to the overall system and a 

demonstration-based user study evaluates the perceptions of key stakeholders towards the system. 

The development of a multimodal DL ADL recognition network for SARs includes the 

selection of three backbone networks for extracting modality specific features from RGB-video, 

user 3D pose locations, and object locations from an RGB-image. A novel spatial mid-fusion 

method is developed to synthesize complimentary semantic features from each modality with a 

universal spatial understanding. A user motion embedding space isolates ADL motion from non-

ADL motion to enable real-time deployment without the need to pre-define unexpected user 

motions not related to ADLs. A low dimensional representation of ADL features, defined as an 

ADL embedding space, is developed to contextualize similarity between ADLs observed offline 

during training and ADLs observed online during implementation. Comparison experiments 

evaluate the network’s classification performance compared to unimodal and dual modal 

approaches. ADL embedding experiments evaluate the ability of the architecture to contextualize 

new ADLs not seen during training.  

1.5 Summary of Contributions 
This thesis seeks to contribute the development of novel technologies for designing SARs as ADL 

assistants. To this end, the contributions proposed are discussed in the following sections.  

1.5.1 Literature Review 

Chapter 2 first presents a review on social robots designed to help older adults to understand the 

current technologies and design strategies that exist for social robots within the context of older 

adult care. After recognizing key enablers and barriers to the deployment of social robots designed 

for use by older adults, this chapter then discusses literature specific to 1) the ADL of dressing, 

including assistive technology for dressing, smart clothing, and wearables used with SARs, to 

highlight the opportunities of using a SAR for dressing assistance, and 2) activity recognition, both 

as a general field and also developments specific to SARs.  
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1.5.2 A Social Robot and Wearable System for Dressing Assistance 

Chapter 3 details the design, development, and testing of a social robot wearable system for 

dressing assistance. This chapter introduces a novel smart clothing wearable designed to facilitate 

interaction with a social robot based on the motions of the user. User motion is classified into an 

activity state defined as the most recently completed dressing step using DL networks and the 

robot responds to the user state with an adaptive behavior selection architecture that learns user 

preferences during the interaction. Testing is performed to evaluate 1) the performance of the 

system in correctly mapping user motion to joint angles, classifying joint angles to dressing steps, 

and adapting robot behavior based on the user response, and 2) the evaluation of potential 

stakeholders using a demonstration-based user study evaluating factors including perceived ease 

of use and usefulness. 

1.5.3 ADL Recognition for SARs 

Chapter 4 details the design, development, and testing of a multimodal DL architecture for SARs 

to recognize and assist with multiple known and unknown ADLs in real-time. This chapter 

includes details on each of the modality specific backbones, the development of the spatial mid-

fusion method for obtaining the ADL embedding space, and the methods used to train the model. 

An ablation study is completed to show the classification accuracy improvements achieved using 

the developed multimodal approach compared to other unimodal and dual-modal methods. An 

evaluation of the ADL embedding space is performed and the results discussed for their ability to 

enable distinguishing between seen, unseen, and atypically performed ADLs.  

1.5.4 Conclusions 

Chapter 5 discusses the contributions of this work with respect to the development of SARs for 

ADL assistance using novel interaction modes and ADL recognition methods to enable 

improvements in SAR autonomy. Future recommendations are also presented to extend this work.  
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CHAPTER 2 

2. LITERATURE REVIEW 
This chapter will discuss the existing literature relevant to SARs for ADL assistance. First, from 

the work published in [49], an overview is presented of SARs developed for older adults, including 

those specifically for ADL assistance, in terms of their physical appearance, interaction modalities, 

and behavior selection. Next, using the review conducted in [50], the focus is placed on the ADL 

of dressing to discuss relevant assistive technologies to understand the unique opportunities that 

exist for using SARs. Then, from the review performed in  [51], SAR intelligence is discussed in 

more detail including methods for ADL recognition and user state estimation relevant to enabling 

SAR autonomy.  

2.1 SARs for ADL Assistance  
This review is from work first published in [49]. 

2.1.1 Physical SAR Design Features 

The main physical design features to consider when developing SARs for older adults are: 1) 

overall robot appearance, and 2) interaction modes. Each feature is discussed within the context of 

promoting effective social HRI and improving health and wellbeing outcomes while aging. 

SAR Appearance 

In general, older adults have specific, yet varying, preferences for the appearance of SARs which 

aid in increasing trust, perceived competence, and acceptance of these robots [17]. These attributes 

can be classified as human-likeness, expressiveness, size, and material composition.  

Human-likeness: The appearance of a SAR may be classified as: 1) human-like, 2) character-

like, 3) machine-like, or 4) animal-like, depending on the body and face features. Human-like 

robots have similar human facial features including eyes, eyebrows, a nose, and a mouth, and body 

features including a torso and two arms; Character-like robots have rounded heads and bodies, 

with minimal features, such as a face with only eyes. Machine-like consists of varying heads and 

body shapes ranging from square to rectangular with components including parts and linkages 

exposed; and Animal-like robots have shapes resembling those of the animals they mimic with 

many possessing fur.  
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An example of a human-like SAR from the waist-up is Brian 2.1 [23] which has a torso with 

a waist and two arms to promote familiarity and a silicone face with two eyes, eyebrows, a mouth, 

and a nose that can deform to display facial expressions. Brian has been used to assist older adults 

in LTC with cognitive interventions including memory games [23] and meal eating [52]. Milo R25 

is a human-like SAR similar in appearance to a small child having an elastic frubber (foam + 

rubber) face with two eyes, eyebrows, a mouth, and a nose [53]. Milo R25 has been used to provide 

conversation therapy to older adults living with Alzheimer’s disease [53]. Alice, an older version 

of Milo R25 was deployed in aging-in-place to support older adults with depression [54].  

Character-like SARs with a combination of a head and arms include 1) Pepper [55], Casper 

[46], ARI [56], Stevie [57], Bandit [58], NAO [59], and Mini [60] which all have a rounded face 

with eyes and a mouth and a torso with two arms, and 2) Hobbit a one-armed robot with a head 

consisting of only eyes [61]. Character-like SARs with a head but without arms include Pearl [62] 

and iCat [63] (mouth and eyes), and Kompai [64] and Max [65] (eyes but no mouth). Some 

applications of character-like SARs are ADL assistance such as Casper for meal assistance [39]; 

cognitive stimulating games with Stevie [66]; monitoring for falls and providing calendar 

reminders using Max [67]; and exercise facilitation with NAO [59],[68], and Bandit [58].  

Tangy is an example of a machine-like robot due to its square face and torso, and its visibly 

exposed cables. Tangy has been used to facilitate group-based cognitive interventions like Bingo 

[69] and Trivia [70]. Baxter [71], used for exercise, is also machine-like with its large frame, square 

head and exposed cables. Companion robots such as the popular seal-like PARO [72] and cat-like 

JoyForAll Cat [73] are animal-like as they resemble real life animals in shape and texture and are 

used for older adult pet-therapy to address loneliness and depression. 

Expressiveness: Focusing on non-verbal visual expressiveness through embodiment, SARs 

may be classified using any combination of: 1) gaze direction, 2) facial expressions, 3) gestures, 

and 4) head and whole-body poses. Hobbit [61] uses head pan and tilt rotations to adjust its gaze 

direction. Max [67] displays both gaze direction and facial expressions through its LCD eyes by 

changing eye direction, color, and shape. iCat [63] actuates its head, mouth, eyes, and eyebrows 

for gaze direction and facial expressions. Pearl [62] is able to blink its eyes. PARO [72] and 

JoyForAll Cat [73] can blink and use head and whole-body movements to show emotions. Mini 

[60] and Stevie [57] have gaze direction, facial expressions using animated eyes, and head and 
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whole-body movements. Other robots including Brian 2.1 [23], Milo R25 [53], Pepper [74], 

Casper [46], ARI [56], Bandit [58], NAO [59], Tangy [69], and Baxter [71] use all four types of 

visual expression for a variety of tasks such as exercise [58] and games [75] to promote user 

engagement [31].  

Size: SARs can be classified by three different height ranges: 1) small-size (< 100 cm), 2) 

mid-size (100-125 cm), and 3) large-size (125-170 cm). Small-size SARs include desktop robots 

NAO [59], Mini [60], Milo R25 [53], and iCat [63] in addition to companion robots PARO [72] 

and JoyForAll Cat [73], the latter of which are similar in size to the animals they resemble. Pepper 

[55], Casper [46], Pearl [62], Kompai [64], Max [65], Bandit (when on a mobile base) [58], and 

Hobbit [61] are all mid-sized SARs and have been deployed in a wide variety of interactions. 

Large-size SARs are ARI [56], Brian 2.1 [23], Tangy [69], Baxter [71], and Stevie [57] which are 

near the average female height of 165 cm [56], are all deployed in LTC for cognitive interventions 

[56] ADL assistance [23], and games [57],[69].  

Material Composition: The materials used to develop the robot’s outer-shell/casing include: 

1) hard plastic, 2) metal, or 3) soft materials. All types of shells are used to prevent robot damage 

from external factors. SARs with hard plastic shells are Pepper [55], Casper [46], ARI [56], Stevie 

[66], Pearl [62], Kompai [64], Max [65], Hobbit [61], Bandit [58], Baxter [71], iCat [63], and NAO 

[59]. Tangy [69] has an aluminum structure which suits its machine-like appearance. Soft materials 

include silicone for Brian 2.1 [23] and a custom formed frubber for Milo R25 [76] to emulate 

artificial skin. Fabrics including artificial fur on Mini’s torso [77] and on the outer layers of PARO 

[78] and JoyForAll Cat [73] customize appearance and texture, and promote physical touch.  

Interaction Modes 

Interaction modes describe the interfaces SARs use to communicate with older adults including 

speech [55], sounds [79], visual displays [65], gestures [58], and physical touch [72].  

Speech: Speech is important for SARs interacting with older adults as it provides them a 

familiar and intuitive form of bidirectional communication [80]. SARs may be classified based on 

their capability to: 1) speak, 2) detect spoken keywords, and 3) detect word associations 

(sentences). Some SARs can only speak such as iCat [63], Tangy [69], and Bandit [58]. Other 

SARs that speak also recognize certain keywords to initiate, pause, or end tasks such as Pearl [62], 

Kompai [64],[81], Max [65], Mini [60], and Hobbit [61]. SARs capable of both speech synthesis 
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and recognition include Pepper and NAO with their built in NAOqi Natural Language Processing 

(NLP) [47], Brian 2.1 using Julius [23],[82], and Casper using IBM’s Watson [39],[83]. ARI [56] 

and Stevie [57] have built in speech modules yet to be implemented in HRI studies with older 

adults. To-date, acoustic models and training data for NLP specific to older adults is limited [38] 

and standard available NLP software is less accurate due to differences in voice acoustics [84], 

cognitive function [41], and sentence structures [85] for this user group.  

Sounds: SARs use sounds proactively or reactively to express robot states such as sleep, 

wakefulness, or excitement to increase engagement [78]. PARO [72] and JoyForAll Cat [73] make 

sounds such as cooing or meowing at various volumes and tones for pet-therapy [79]. Mini [77] 

uses sounds such as laughter, whistling, and yawning. Due to cognitive decline, non-verbal 

vocalizations like “hmm-mm” or “ugh” are more frequently used by older adults to express 

themselves [41], however these sounds have yet to be used as input for HRI.  

Gestures: Human gesture types include [86]: 1) illustrators that add emotional expression and 

emphasis to speech (i.e., body language), 2) manipulators used subconsciously that involve 

interaction between body parts or other objects like fidgeting, and 3) emblems used deliberately to 

represent words like head-nods or head-shakes. SARs for older adults focus mainly on displaying 

and detecting illustrator and emblem gestures. SARs that use illustrator gestures include Brian 2.1 

[23], Pepper [55], Casper [46], ARI [56], Bandit [58], NAO [59], Mini [60], Stevie [57], and Tangy 

[69] to indicate focus of attention when speaking [69],[70] or complement the emotion in speech 

[23]. Brian 2.1 [23] can determine user engagement by detecting illustrative gestures based on 

Canadian cultural norms. Pepper [47] uses emblem gestures such as bowing and waving to display 

cultural competency specific to either Japanese or British backgrounds. Hobbit [61] uses emblem 

gestures for different commands such as swiping for menu navigation. Bandit [58], Baxter [71], 

and NAO [59],[68] use emblems during exercise tasks to communicate proper exercise form and 

detect user compliance. 

Displays: Visual displays are used to provide task specific instructions [46], show pictures or 

videos [47], or for teleconferencing with other people [67]. Displays may be output only or 

interactive touchscreens. Tangy uses its torso display to show Bingo numbers and Trivia questions 

to augment its speech [69],[70]. SARs with touchscreens include Casper to provide meal assistance 

instructions and offer recipe choices [46], Stevie for voice/video calling [57], and Pearl to add 
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upcoming appointments to its calendar [62]. Furthermore, Pepper [47], Kompai [64], Max [65], 

Hobbit [61], Mini [60], and ARI [75] all display cognitive games on their touchscreens, which is 

especially valuable for older adults where comprehension speeds will vary [41]. Display height is 

typically targeted to accommodate older adults in a seated position, some displays may be tilted to 

improve accessibility when standing [55],[64],[65].  

Physical touch: In general, SARs do not touch a user however some can detect physical touch. 

Physical touch detection may be categorized [87] as: 1) affective, for showing appreciation, 2) 

instrumental, to achieve a specific task, 3) controlling, to get attention, and 4) ritualistic, for 

greetings or departures such as handshakes. SARs that detect affective touch such as petting or 

stroking include the pet-like robots JoyForAll Cat [73] and PARO [88]. Baxter [71] detects 

instrumental touch during interactive exercise games. Mini [77] responds to controlling touch (e.g. 

a tap on head) for initiation of tasks. Pepper [55] detects ritualistic touch from sensors, i.e., on the 

top of its head, as a means of putting the robot in/ out of sleep mode. Culture was not explicitly 

considered in developing physical touch for SARs; however, it could help to promote 

generalizability to older adults with different cultural backgrounds. 

Table 1 presents a summary of the design features and applications of the aforementioned 

SARs, with respect to the categories for type of appearance and interaction mode. In general, 

studies on the effectiveness and efficacy of SARs for older adults have shown positive outcomes 

most notably in cognitive training, ADL assistance, and as multifaceted solutions to prolong aging-

in-place [17], [25], [89]. These applications are the most common for the SARs in Table 1. The 

use of SARs for social and psychological therapy requires more rigorous testing as current studies 

are limited to short-term interventions and their results are influenced by external factors such as 

changes in the daily lives of older adult [89].  
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Table 1. Existing SARs for older adults [49]. 

SAR  Applications 
Appearance 
Categories 

Interaction 
Modes Works 

Brian 2.1 

 
Courtesy of ASB 

Lab, UofT 

Engages in 
cognitive and 

memory games, 
meal-eating 
assistance 

Type: Human-like 
Face: Gaze 

direction, facial 
expressions through 

deformable face 
Body: gestures, and 

head and upper -
body movements 

Size: Height: 135 cm 
Outer Shell  

Material: Silicone 
face, aluminum body 

Input: Sentence 
recognition, affect 
detection through 
body poses and 

gestures, 
wearable and 

object-based task 
specific sensors, 

illustrator 
gestures 

Output: Speech 
synthesis, facial 

expressions 
illustrator 
gestures 

[28][23] 
[52]  

 
Milo 25 

 
Courtesy of 
Robotkind 

 

Conversation 
therapy for older 

adults with 
Alzheimer’s 

disease 

Type: Human-like, 
Face: Gaze 

direction, facial 
expressions through 

deformable face 
Body: gestures, and 

head and upper -
body movements 

Size: Height: 50 cm 
Outer Shell  
Material:  

Polymer face, hard 
plastic body 

Input: Sentence 
recognition 

Output: Speech 
synthesis, 
illustrator 
gestures 

[53][54] 
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Pepper 

 
Courtesy of 
RobotLAB 

Engages in 
conversations,  

facilitates games 
and exercise  

Type: Character-like 
Face: Different eye 
colors for showing 

emotion 
Body: gestures, head 

and whole-body 
poses 

Size: Height: 120 cm 
Outer Shell  

Material: Hard 
plastic (injection 

molded) 

Input: Sentence 
recognition, 
touchscreen, 

ritualistic touch 
on head to sleep 
Output: Speech 

synthesis, 
illustrator and 

emblem gestures, 
touchscreen 

[47][55] 
[74][90] 

[91] 

Casper 

 
Courtesy of ASB 

Lab, UofT 

Assists with 
meal preparation  

Type: Character-like 
Face: Gaze 

direction, facial 
expressions through 

LEDs 
Body: gestures, head 

and whole-body 
poses 

Size: Height: 125 cm 
Outer Shell  

Material: Hard 
plastic (3D Printed) 

Input: Sentence 
recognition, 
touchscreen, 

Output: Speech 
synthesis, 
illustrator 
gestures, 

touchscreen 

[39][46] 
[92]  

ARI 

 
©PAL Robotics 
2021, all rights 

reserved 

 Provides 
reminders for 

scheduled 
activities, 
cognitive 

games, fall 
detection, 

audio/video 
calling, 

Type: Character-like 
Face: Gaze 

direction, different 
head colors for 

showing emotion 
Body: gestures, head 

and whole-body 
poses 

Size: Height: 165 cm 
Outer Shell  

Material: Hard 
plastic 

Input: Sentence 
recognition, 
touchscreen, 

Output: Speech 
synthesis, 
illustrator 
gestures, 

touchscreen 

[56][75] 
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Stevie 

 
Courtesy of Trinity 

College Dublin 

Engages in 
conversations, 

facilitates group 
games  

Type: Character-like 
Face: Gaze 

direction, facial 
expressions through 

LCD display  
Body: head and 

whole-body poses 
Size: Height: 140 cm 

Outer Shell  
Material: Hard 

plastic 

Input: Sentence 
recognition, 
touchscreen 

Output: Speech 
synthesis, 
illustrator 
gestures, 

touchscreen 

[57][66] 

Bandit 

 
Courtesy of USC 
Interaction Lab 

Physical 
exercise coach, 
cognitive games  

Type: Character-like 
Face: Gaze 

direction, facial 
expressions through 
actuated eyebrows 

and mouth 
Body: gestures, head 

and whole-body 
poses 

Size: Height: 110 cm 
Outer Shell  

Material: Hard 
plastic 

Input: Exercise 
emblem gestures 
Output: Speech 

synthesis, 
exercise emblem 

gestures 
 

[58][93] 

NAO 

 
Courtesy of 
RobotLAB 

Smart home 
interface,  

exercise coach 

Type: Character-like 
Face: Gaze 

direction, different 
eye colors 

Body: gestures, head 
and whole-body 

poses 
Size: Height: 58 cm 

Outer Shell  
Material: Hard 

plastic 

Input: Sentence 
recognition, 

exercise emblem 
gestures 

Output: Speech 
synthesis, 
illustrator 

gestures, exercise 
emblem gestures 

[59][68] 
[94] 
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Mini 

 
Courtesy of UC3M 

Robotics Lab 

Cognitive 
games, 

interactive 
dance 

Type: Character-like 
Face: Gaze 

direction, facial 
expressions, and 
head and whole-

body poses 
Size: Height: 50 cm 

Outer Shell  
Material: Hard 
plastic with fur 

clothing 

Input: Sentence 
recognition, 
touchscreen, 

controlling touch 
for starting tasks 
Output: Speech 

synthesis, 
illustrator 
gestures, 

touchscreen 

[60][77] 

 
iCat 

 
Courtesy of 

Christoph Bartneck 
 

Engages in 
conversations, 

provides 
reminders and 

weather 
information 

Type: Character-like 
Face: Gaze 

direction, facial 
expressions 

Size: Height: 38 cm 
Outer Shell  

Material: Hard 
plastic 

Output: Speech 
synthesis [63] 

Hobbit 

 
Courtesy of Hobbit 

Project 

Provides 
reminders, 
household 

object retrieval, 
cognitive 

games, fall 
detection, 
exercise  

Type: Character-like 
Face: Gaze direction 
Size: Height: 125 cm 

Outer Shell  
Material: Hard 

plastic 

Input: Keyword 
recognition, 
command 

emblem gestures, 
touchscreen 

Output: Speech 
synthesis, 

touchscreen 

[61][95] 
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Pearl 

 
Courtesy of CMU 

Robotics 

Provides 
reminders, 

mobile 
navigation guide 

Type: Character-like 
Face: Blink 

Size: Height: 120 cm 
Outer Shell  

Material: Hard 
plastic 

Input: Keyword 
recognition, 
touchscreen 

Output: Speech 
synthesis, 

touchscreen 

[96][62]  

Kompai 

 
Courtesy of 

Kompai 

Provide 
reminders, 

mobile 
navigation 

guide, 
audio/video 

calling, 
cognitive games 

Type: Character-like 
Face: Static 

Size: Height: 125 cm 
Outer Shell  

Material: Hard 
plastic 

Input: Keyword 
recognition, 
touchscreen 

Output: Speech 
synthesis, 

touchscreen 

[64][81]  

Max 

 
Courtesy of 

Ilmenau University 
of Technology 

Provide 
reminders, smart 
home interface, 

audio/video 
calling, 

cognitive 
games, fall 
detection 

Type: Character-like 
Face: Gaze 

direction, eye-color 
to show current task, 

eye shape to show 
state 

Size: Height: 120 cm 
Outer Shell  

Material: Hard 
plastic 

Input: Keyword 
recognition, 
touchscreen 

Output: Speech 
synthesis, 

touchscreen 

[65][67] 



18 
 

Tangy 

 
Courtesy of ASB 

Lab, UofT 

 Group 
cognitively 
stimulating 
activities  

Type: Machine-like 
Face: Gaze 

direction, facial 
expressions through 

mouth actuation 
Body: gestures, head 

and whole-body 
poses 

Size: Height:140 cm 
Outer Shell  
Material: 
Aluminum 

Input: Keyword 
recognition, task 
progress through 
RGB-D camera 
Output: Speech 

synthesis, 
illustrator 

gestures, display 

[32][69] 
[70][97] 

Baxter 

 
Courtesy of 

CORiS, OSU 

Exergames  

Type: Machine-like 
Face: Gaze 

direction, facial 
expressions on LCD 

display 
Body: gestures, arm 

poses 
Size: Height: 178 cm 

Outer Shell  
Material: Hard 

plastic 

Input: Exercise 
emblem gestures, 

instrumental 
touch 

Output: Exercise 
emblem gestures 

[71]  

PARO 

 
Courtesy of PARO 

Robots 

Pet therapy 

Type: Animal-like 
Face: Blinking 

Body: Head and 
whole-body 
movements 

including head 
shaking, tail and 

flipper movements 
Size: Height: 16 cm 

Outer Shell  
Material: Hard 

plastic with fur cover 

Input: Affective 
touch 

Output: 
Expressive 
sounds and 
movements 

[72][78] 
[79][88]  
[98][99]  
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JoyForAll Cat 
Joy for All 

 
Courtesy of 
JoyForAll 

Pet therapy 

Type: Animal-like 
Face: Blinking 

Body: Head and 
whole-body 
movements 

including head 
nodding and paw 

raising 
Size: Height: 26 cm 

Outer Shell  
Material: Hard 

plastic with fur cover 

Input: Affective 
touch 

Output: 
Expressive 
sounds and 
movements 

[73][99] 

 

2.1.2 Older Adult Care Studies on SAR Features 

Several HRI studies have been conducted with older adults to measure and compare appearance 

features and interaction modes of SARs using key concepts such as trust, likeability, and intent to 

use. In general, these studies either have low participation numbers (e.g., between 5-10 users) 

[67],[81],[92] or are limited to a single interaction [63],[71],[78]. This is primarily due to 

limitations in working with vulnerable populations such as older adults with dementia who may 

face cognitive fatigue when engaging in such research studies [47]. However, critical user trends 

within these studies can still be identified with respect to such measures as trust, intent to use, and 

enjoyment, and can be used to inform other similar studies. It is important to note that this field of 

HRI is still in its infancy [17], while also considering the challenges of working with vulnerable 

populations and the novelty of the SARs being tested [100]. 

Human-likeness: In [92], the influence of robot embodiment in assisting with a tea-making 

ADL on the overall perceptions and experience of HRI for older adults with mild cognitive 

impairments (MCI) was investigated. Three different platforms were used consisting of a 

character-like robot (Casper), machine-like robot (Ed), and a tablet placed on a table. 

Questionnaire results showed that Casper was the most preferred and engaging robot due to its 

dynamic features.  

In [101], three robot characteristics were individually manipulated: robot face (none, machine-

like, character-like), voice (none, digitized, human), and interaction mode (none, display tablet, 
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touchscreen) to determine their influence on the affect of older adults during medication delivery. 

A character-like face and a touchscreen had the most influence on self-reported positive affect with 

the latter also increasing engagement as measured with heart rate. Using a human voice also 

increased positive affective response, however, with a lower effect size.  

Expressiveness: In [63], the iCat character-like robot was used to explore the combined effect 

of facial expressions (smiling and nodding/none) and gaze (looking at user/not looking at user) on 

SAR acceptance by older adults during an information providing task (weather, reminders, etc.). 

Participants who interacted with the expressive iCat showed more conversational expressions, 

however, this did not increase SAR acceptance as measured by post-interaction surveys.  

Size: In [77], the 50 cm tall SAR Mini was placed in a LTC home for 2 months where residents 

could freely interact with the SAR to engage in exercises using its touchscreen. Questionnaires for 

older adults, caregivers, and relatives showed high scores for usefulness, ease of use, and 

satisfaction with the SAR being perceived as friendly, smart, and safe. However, older adults did 

not believe Mini could increase their autonomy.  

Material composition: In [78], PARO was used with independent living older adults to 

explore potential emotional support benefits. Older adults participated in a guided introduction to 

PARO and its capabilities with opportunities to hold and interact with the SAR using touch. Post-

interaction interviews showed that older adults most liked PARO’s fur, color, and cute appearance 

while they least liked PARO’s limited functionality including inability to understand speech.  

Verbal Communication: In [81], Kompai was deployed in the homes of older adults living 

alone. Users could ask the SAR to perform several tasks using either verbal communication or a 

touchscreen. Users below 80 years of age had no clear preference of communication mode, 

however, there was a significant preference for adults older than 80 to use speech.  

Sounds: In [73], older adults engaged with the JoyForAll Cat in their own homes during two 

months to investigate if the robot could decrease loneliness. Older adults reported a decrease in 

loneliness, and interviews showed they appreciated the presence of the SAR. However, while the 

SAR could make sounds, many older adults noted the lack of interaction and responsiveness.  

Gestures: SARs that can show and understand illustrative gestures have been rated highly by 

older adults for intent to use and enjoyment [23]. Expressing emblem gestures using Pepper to 
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display cultural competency can increase the emotional wellbeing of older adults as shown in HRI 

studies with this robot using culturally appropriate greeting gestures such as bows and waves with 

users from both Japan and Britain [47].  

Displays: The addition of touchscreens increases positive emotional response and engagement 

[101] and supports verbal information from SARs through the use of text and visuals in tasks like 

Trivia [70] or cognitive games [77]. Furthermore, a separate study with Hobbit showed speech and 

a touchscreen were significantly preferred to understanding emblem gestures for giving the SAR 

commands [54]. 

Physical Touch: In [71], the machine-like Baxter robot was used to determine the effect of 

physical touch (hitting/none) on older adult enjoyment of exercise games. Participants completed 

8 games with varying amounts of physical touch in the form of hitting pads mounted to force 

sensing actuators. All activities that involved hitting rated high for enjoyment.  

In [67], the SAR Max was deployed in residential care apartments to allow older adults to use 

features such as medical reminders, audio/video calling, and emergency detection. Some 

participants reacted emotionally to its behaviors, speaking to it as a social entity and frequently 

touching the SAR during interaction. Physical touch has been shown to also increase moods in 

pet-therapy sessions with PARO [78].  

2.1.3 SAR Awareness and Behavior Frameworks 

To design adaptive behaviors and intelligent autonomy for SARs, robot architectures have been 

developed to achieve robot awareness (task and user classification) and personalization (adaptive 

behaviors) based on the varying needs of older adults.  

Task and User State Classification  

Task classification is used to identify and monitor the steps needed in completing a particular task. 

User state classification considers user affect and engagement throughout the interaction as input 

for robot behaviors. Both classification forms may use data from onboard robot sensors including 

RGB-D cameras [69],[102] or user and object sensors [52],[103]. 

Task State Classification: In [102], task classification was performed by the character-like 

HomeMate SAR using RGB-D and laser scan data with a dynamic Bayesian network (DBN) to 

determine observed task states between the ADLs of meal preparation, cooking, eating, and taking 
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medication. The SAR extracted features from the skeleton model of older adults and the relevant 

objects, i.e., dishes or a fridge for the DBN to classify the most likely task observed. 

In [69], Tangy autonomously facilitated Bingo games with LTC residents. The game 

progression for a player was monitored when the older adults requested personalized assistance 

using an infrared reflective system detected by the Robot’s IR sensor. Once the SAR approached 

the older adult, a 2D camera was used to detect the Bingo card features using its unique identifier 

picture and determine the location of number markers to classify the Bingo card as: 1) marked 

correctly, 2) incorrectly marked and/or missing markers, and/or 3) a winning card. 

User State Classification: In [103], the Pepper robot classified user valence and arousal into 

an affect detection model using multilayer perception neural networks during a robot emotion 

elicitation activity. The affect of older adults from a LTC home was measured using an EEG sensor 

during robot emotional dancing which was defined as upper body movements to express either 

positive valence and high arousal or negative valence and low arousal based on movement speed 

and dynamics [103]. 

In [104], NAO used RGB cameras to identify facial features for emotion classification between 

seven different expressions using a Random Forest Classifier. Using a combination of distance, 

polygonal area, and elliptical area features resulted in good accuracy with older adults even when 

their faces were partially occluded by fingers or glasses.  

Task and User State Classification: In [52], Brian 2.1 classified the progression of the meal 

eating task with older adults using a smart tray (with embedded force sensors) and utensil tracking 

system (using Wiimotes onboard the robot) to provide appropriate prompts, social encouragement 

and reinforcement. Body language and face orientation were also tracked and classified using a 

3D Kinect sensor to determine if the older adult was distracted or accessible during meal eating to 

reengage them if needed using different robot emotions.  

Adapting SAR Behaviors 

Behaviors of autonomous SARs were initially designed with finite state machines (FSMs) to 

provide predefined responses for sets of identified inputs from users and their environments [27]. 

Recently, adaptive behavioral control has been used in SARs via: 1) robot self-learning through 

direct interactions with users [47], 2) learning from demonstrators (e.g., caregivers or experts) 
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[97], or 3) a combination of the two [39]. In designing SAR behaviors for effective HRI with older 

adults, emotional [31] or persuasive [32] strategies can be implemented to adapt to user and task 

specific preferences [33]. 

Task Behavior Learning Methods: Reinforcement learning (RL) methods have been used 

for SAR self-learning using rewards such as level of engagement [47]. However, since all 

behaviors must be attempted for a SAR to learn those that elicit high rewards, there is a risk that 

older adults may need to repeat a negative response to poorly received behaviors several times, 

causing confusion or frustration [39]. Learning from demonstration (LfD) has been used for SARs 

to learn new skills by directly observing them from caregivers, such as Tangy learning to 

autonomously facilitate Bingo sessions from caregivers in LTC homes [97]. LfD benefits from 

fewer user interactions to determine behavioral strategies, however, it can rely on a significant 

number of demonstrations. A unique hybrid approach using both LfD and RL can also be used to 

provide robot learning of task-specific behaviors through LfD and then personalization through 

online learning using RL, as was used by Casper in assisting older adults to make tea [39]. 

Emotional Behaviors: SARs use emotional models to communicate their intent and internal 

states to older adults during assistance to improve older adult understanding of the robots [31]. 

FSMs use transition rules to relate inputs from SAR sensors to robot emotion state changes to 

improve older adult task performance [23],[68]. Alternatively, in [91], an nth order Markov Chain 

based emotion model was developed for the Salt robot to determine when to display the four 

emotions of happy, interested, sad and worried, in response to user engagement in an activity, user 

affect and the robot’s own emotional history.  

Persuasive Behaviors: Persuasion in HRI seeks to change users’ attitudes or behaviors [96]. 

Persuasion strategies used by SARs when interacting with older adults can be categorized as: 1) 

motivation strategies [93], and 2) compliance gaining persuasive strategies [32]. Persuasion 

strategies are frequently used by assistive technologies to achieve compliance and engagement in 

ADLs by older adults and present opportunities for similar strategies to be used by SARs [105]. 

2.1.4 Older Adult Care Studies on SAR Behaviors 

Studies have been conducted with older adults to investigate various robot behavior learning 

methods and the use of SAR emotion and/or persuasion on HRI experience. User and state 

classification have been mainly used as inputs for SAR behavior adaptation. 
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Task Behavior Learning Methods: In [47], Pepper used RL to determine discussion topics 

and robot gestures based on user engagement, measured by older adult verbal responses, in order 

to improve user emotional states. The SAR’s dialogue was personalized overtime as users engaged 

in conversations and playing games with the robot. Conversation personalization was focused on 

British and Japanese cultural topics. After two weeks of interactions, emotional wellbeing 

improved compared to a baseline group.  

In [97], Tangy used LfD to learn from caregivers how to autonomously facilitate Bingo 

sessions using behaviors including calling out Bingo numbers and checking Bingo cards. Teachers 

could further customize the robot’s learned behavior by modifying the SAR actions using a 

graphical user interface. An HRI study with LTC residents showed that older adults believed the 

SAR was easy to use and found Tangy’s behaviors helpful and enjoyable.  

In [39], Casper used LfD to learn assistive behaviors from allied-healthcare students from 

nursing, occupation and physical therapy, and speech-language pathology, to assist older adults in 

the tea making activity using verbal and non-verbal -based prompts with varying levels of speech 

directness (assertive/suggestive) and movement activity (high/medium/low). Casper’s behavior 

was further personalized using on-line RL based on completion of activity steps. User studies with 

Casper [92] and residents in a retirement home showed they perceived Casper as socially 

intelligent and had high levels of engagement and positive affect. 

Emotional Behaviors: In [23], Brian 2.1 played a matching card memory game with older 

adults in LTC setting. The robot displayed emotional behaviors (happy, neutral, sad) using an 

FSM-based behavior model that autonomously determined voice and facial expressions based on 

player accessibility (high to low). Questionnaire results showed that emotional expression was the 

most liked feature of Brian 2.1, which also received high scores for enjoyment and acceptance. 

In [106], the Salt robot autonomously facilitated exercise sessions for older adults living in 

LTC. The robot guided the participants through multiple repetitions of upper-body exercises, using 

its nth order Markov model to determine its emotional response (happy, interested, sad, worried). 

The majority of users maintained a positive valence throughout the sessions with Salt and believed 

their physical health was improved. They were also motivated to continue performing daily 

exercises with the robot after the 2-month study was completed. Both emotional behavior 

adaptation studies were based in Canada [23], [106].  
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Persuasive Behaviors: In [93], Bandit was used to facilitate a musical cognitive game with 

older adults to explore whether it could improve cognitive attention through adaptive motivational 

behavior. Bandit changed its assistance level, using an FSM based on user reaction time and the 

percentage of game questions answered incorrectly, between 1) no hints, 2) directing when to press 

a button, and 3) saying which button to press. Analysis of older adult engagement during the 

activity confirmed the SAR was able to maintain user attention and improve task performance. 

In [74], Tangy used a Thompson Sampling based approach during Bingo game facilitation to 

learn a personalized persuasive strategy for encouraging a specific older adult to comply with 

requests for playing. The persuasive strategies learned included neutral, praise, suggestion, and 

scarcity. A user study with Tangy and residents of a LTC home was conducted to explore 

engagement based on visual focus and compliance during group gameplay [69]. Tangy’s 

personalized assistance was found to increase engagement with all users having very high 

compliance with SAR requests. 

2.1.5 Discussion on SAR Design 

Does the appearance of the robot matter? In comparison studies that focused on assistive tasks, 

SARs with more human-like appearance received higher ratings for engagement, perceived 

intelligence, and intent to use [92]. Studies using simplistic character-like SARs suggest that robot 

capabilities, namely the tasks performed [81] and interaction modes enabled by its appearance 

such as gestures [67], were the main design aspects that older adults were concerned with over 

appearance. This focus on capabilities over appearance has also been shown in focus groups on 

assistive robots with older adults [107].  

Typically, preference studies have focused on showing pictures and videos of SARs [26],[108] 

instead of physical robot interactions, further limiting the real in-person experiences of older 

adults. Additionally, the considered works do not specify any cultural differences in appearance 

preferences and there are also no quantifiable differences between studies due to large intra-study 

variation. To fully understand appearance preferences requires long-term studies deploying and 

comparing SARs with similar capabilities but varying appearance types to isolate appearance 

effects while considering demographic and culturally diverse users. It is suggested that in 

developing SARs for older adults, functionality and familiarity are very important to this user 

group and should be the main priorities during feature design. In this thesis, development is done 



26 
 

using the robot Leia (based on the Nao platform by Softbank robotics) for its gesture and speech 

functionality and character like appearance to provide familiarity.  

How many interaction modes is too much? When available, verbal communication was 

found to be the most used and liked interaction mode with older adults for social interactions [109] 

and task commands [81]. The presence of sounds for pet therapy [73], gestures for exercise [58], 

touchscreens for cognitive games [77], and physical touch for exergames [71] were also found to 

positively influence HRI. Current works have not directly considered cultural differences in 

interaction mode preferences, however, some have customized modes such as greeting gestures 

based on culture which has shown to further improve HRI [47]. Cultural customization can be 

applied to both verbal and non-verbal interaction modes such as spoken expressions or using 

symbolic representations on interfaces. SARs with multiple interaction modes provide older adults 

accessibility and flexibility in using the modes that best suit their physical limitations and personal 

preferences which improves HRI [61]. An open challenge is to determine when the cost of adding 

additional interaction modes outweighs the benefit to the older adult users who may not use these 

modes [61] or find them annoying [68].  

SAR developers should focus on identifying and improving existing highly valued interaction 

modes with this population, such as verbal communication, which numerous studies claim as being 

well-liked [52],[81] but also dysfunctional [27] due to existing audio and speech issues. There are 

also opportunities to explore less commonly used interaction modes in new contexts or develop 

new interaction modes to meet the specific needs of older adults. Some studies have found older 

adults have physically touched SARs even when they lack such capabilities [67], suggesting the 

potential in exploring physical touch beyond exercise environments [71] or pet therapy [78] to 

include tasks like ADL assistance. Older adults are more likely to use non-verbal utterances due 

to cognitive decline [41], presenting opportunities to improve accessibility by understanding the 

potential intent of these sounds in HRI. 

An under explored interaction modality is the use of wearable sensors, namely for recognizing 

ADL related actions to monitor task progress. The following section of the literature review will 

explore wearable sensors used by SARs in greater depth to understand potential applications for 

ADL assistance, namely for assisting with the ADL of dressing.  
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How should SARs behave? SAR behavior that can adapt to user preferences and affective 

states has shown increased task performance [52] and compliance [69] among older adults. As 

developers seek to improve the social abilities of SARs, behaviors will need to focus on providing 

a personalized approach [110] while considering issues with respect to privacy, transparency, and 

user autonomy [37]. Further work is required to develop ethical frameworks specific to SARs with 

older adults to understand these concerns from a design perspective [111] similar to what has been 

done for telepresence robots [112]. 

An example requiring ethical consideration is the demand for a transparent approach to be 

taken to avoid developing deceptive or manipulative behaviors that will decrease long-term trust 

and efficacy of SARs, even if they gain short-term user compliance [113]. For emotional models, 

the relationship between cultural background and emotional expression [114] requires SAR 

behaviors to be sensitive to different cultural norms of intended users, and aim to create culture-

neutral expressions [115] when possible. It is also critical to understand on an individual level how 

adults age, and what their needs and wants are with respect to SARs, as these can vary from one 

individual to another [116]. SAR behavioral models must account for such diversity in user 

abilities and aspirations [117]. 

Empathy is a underdeveloped promising strategy for SARs to use with older adults [110] 

which may be defined as “The act of perceiving, understanding, experiencing, and responding to 

the emotional state and ideas of another person” [118]. Empathy presents unique challenges as it 

requires integration of classification, adaptation, and emotional frameworks. For older adults, 

empathy has the potential to improve social stimulation and connection which is critical for 

applications that seek to decrease loneliness and depression [110]. Empathetic strategies specific 

to older adult mental health have already been an area of study in healthcare, and future SAR 

developments may use the outcomes from this research to design empathetic frameworks [119]. 

Classification, whether to enable empathy or other behavioral models, must consider the 

diverse number of different activities a user may complete. For ADL classification, observed 

activities may include both ADLs which the SAR has seen before during a training phase, as well 

as unknown ADLs. The last section of this literature review will discuss existing methods of ADL 

recognition, both broadly and more specifically for SARs, to understand key design features for 

improved performance in addition to limitations of current works. 
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2.2 Assistive Technologies for Dressing 
This review was a contribution first published in [50]. Among ADLs, dressing is of particular 

importance as it enables self-expression, and the ability to dress oneself is associated with personal 

confidence [120]. Individuals with cognitive impairments face challenges in dressing associated 

with engagement in an activity and completion of the necessary activity steps, as they have reduced 

capacity to sustain attention on a sequential task and limited short term memory [121], [122]. To-

date, systems used for providing dressing assistance include smart wardrobes [123]–[125], sensory 

devices for dressing state monitoring [126]–[128], and physically assistive technologies such as 

robot manipulators to dress a user [129]–[131]. 

2.2.1 Non-Contact Assistive Technologies for Dressing 

Non-contact assistive technologies have been designed to: 1) provide clothing recommendations 

to a user by using smart wardrobes [123]–[125], or 2) track user dressing progress and provide 

feedback/corrective instructions via sensory devices to [126]–[128].  

Smart Wardrobes 

Smart wardrobe systems focus on the clothing selection task of getting dressed by identifying the 

dressing state through tracking when clothing is removed from its storage location [123] and in 

some cases also making clothing suggestions based on external information such as weather [124], 

[125]. For example, in [123] users with vision and/or hearing impairments were provided with 

customized devices which used a combination of visual (e.g., LEDs near clothing storage), 

vibration-based (e.g., wearables), and auditory (e.g., recorded voice over speakers) cues to help 

direct them to put on clothing items. Clothing items for a given outfit were tracked using signals 

from motion sensors on a customized wardrobe to identify when clothing items were selected by 

the user. 

In [124], a smart wardrobe was developed for residents in assisted living centers. The wardrobe 

consisted of a wooden frame to hold the clothes, motion sensors used to detect clothing removal, 

LED strips aligned with clothing locations, and a Wi-Fi enabled tablet as a user interface displaying 

clothing suggestions. Rule based heuristics used indoor temperature from IoT sensors in the home, 

the weather forecast from an online database, and a user’s event schedule using the Google 

Calendar API as input data to provide clothing recommendations. The tablet displayed clothing 

recommendations and the LEDS associated with the recommended clothes in the wardrobe were 
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illuminated. Users could follow the suggestion on the tablet or browse for other options using its 

interface. User decisions were stored for future recommendations.  

In [125], a smart wardrobe was developed to alleviate the burden of decision making required 

for clothing selection. RFID tags were attached to clothes in the wardrobe and were detected using 

an RFID reader placed above each clothing compartment. The user used a tablet to specify their 

mood and preferred colors. A matching algorithm used color matching and texture heuristics along 

with a random number generator to recommend clothing items. A limitation of all smart wardrobes 

is that they only assist with clothing selection rather than the entire dressing activity, due to their 

lack of both perceiving the user and interaction capabilities. 

Sensory Devices 

Devices used for tracking user dressing steps have focused on tracking clothing locations to 

provide feedback or corrective instructions using multiple sensors [126]–[128]. In [126], a 

customized dressing space was developed that included three RFID antennas positioned in front 

of a mirror, on a clothing hanger, and on a wardrobe to detect embedded RFID tags on clothing. 

Dressing errors (e.g., forgetting to put on a clothing item, putting on clothing items in an incorrect 

order) were identified using a Layered Hidden Markov Model based on the time series location 

data. 

In [127], a camera was positioned facing a user to detect dressing errors classified as temporal 

(wrong order), relational (wrong orientation), or spatial (partially worn). Support vector machines 

(SVMs) were developed and trained on color histograms and texture information using a gray-

level co-occurrence matrix and local binary patterns to identify the clothing item on the user.  

In [128], a dressing state evaluation system was developed using: 1) a tablet that visually 

displayed the dressing steps to be completed in list format, 2) motion sensors adjacent to clothing 

item storage locations for monitoring when a user selects the item, 3) skin conductance wearable 

sensors for monitoring stress, 4) RFID readers and tags for clothing localization, and 5) a RGB 

camera and custom fiducial markers for determining clothing orientation. A series of rules were 

used for each dressing step using the location of all fiducial markers to determine the specific 

dressing classes such as “both arms of shirt worn” and “partial dressing (incomplete)”. The motion 

sensors were used to detect if clothing was removed before it was time to put it on. Furthermore, 



30 
 

the system could determine when a user was “stuck” by combining recent task progress with skin 

conductance-based measurements to trigger audio appropriate instructions.  

The sensory devices that have been developed for dressing assistance have shown success in 

tracking dressing steps based on clothing item location using cameras and RFID tags. However, 

these solutions are limited in their ability to identify important dressing actions such as 

buttoning/zipping up as they classify dressing steps using only clothing locations. The wearable 

sensory system directly tracks user motion to enable classification of all dressing steps including 

those that do not require a change in clothing location/position. This thesis builds on existing work 

in smart clothing for motion tracking as outlined below. 

2.2.2 Assistive Technologies for Dressing using Robotics 

Robotic technologies used for the dressing ADL have either consisted of robot manipulator arms 

to physically help with dressing [129]–[131] or socially assistive robots providing prompts and 

feedback to guide users through the dressing steps [132]–[134].  

The Baxter robot has been used for physical dressing assistance using user joint positions 

obtained using 1) RGB-D cameras with skeleton tracking [129], 2) RGB-D cameras with occluded 

joint position estimation based on positions of visible joints [130], and 3) built-in torque sensors 

with probabilistic human joint estimation [131]. In [129], user position tracked using an RGB-D 

camera was used to generator manipulator velocities based on the shortest path or repositioning 

requests when the user was out of reach. This approach was limited by camera view occlusion 

from the clothing and Baxter’s manipulators. In [130], a recurrent neural network (RNN) was used 

to estimate elbow joint locations when the elbows were occluded by upper body clothing during 

dressing. A regression trees approach determined which visible joint locations, such as shoulders 

and hips, to use as features for input to the RNN. In [131], Baxter’s built-in force-torque sensors 

with a hierarchical multitask controller using a probabilistic model were used to determine 

manipulator trajectories. The controller was trained to minimize the force between the user and the 

robot, eliminating the requirement for a clear view of the user.  

In [132], a sensor array was integrated into a smart collared shirt for monitoring dressing states 

in order for the Pepper robot to use to provide social dressing assistance. The sensor array included: 

1) a front mounted IR LED for detecting orientation between front/back of the shirt, 2) contact 

switches on the buttons for determining fastening, and 3) arm sleeve and back mounted capacitive 
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switches for detecting contact with human skin for determining partially worn states. User dressing 

states identified using the combination of these sensors included correctly worn, partially worn, 

backwards, or inverted. 

In [133], [134], the socially assistive robot Leia was introduced to provide both verbal and 

visual clothing recommendations using a developed app displayed on a tablet adjacent to the robot. 

Users were guided through a clothing selection process based on weather, user preferences and 

dress code, and activity plan information including if they will be active or outdoors. The robot 

then used a multinomial logistic regression (MLR) method for providing an ordered list of 

suggestions. while learning recommendations through user interactions. Depending on user 

clothing item selection, user preferences for specific items were updated using stochastic gradient 

descent.  

Robot manipulators have focused on physically dressing people, rather than encouraging them 

to self-dress, which can result in individuals losing their own ability to dress themselves [10]. In 

general, social dressing assistance has been found to improve the independence and functional 

performance of cognitively impaired people by empowering them to complete activities using their 

own abilities [135]. Socially assistive robots can provide prompts and progress feedback to users, 

in order to motivate them to dress themselves. However, to-date, socially assistive robots have 

only been used for the clothing selection task and not the dressing task itself. 

2.3 ADL Recognition for SARs 

This review was first published in [51]. Existing work in human activity recognition (HAR) utilizes 

a variety of methods to improve accuracy, enable unsupervised learning, and adapt to specific 

scenarios and users. This section provides a detailed discussion on: 1) multimodal DL networks 

for HAR, 2) embedding of feature spaces for HARs, and 3) HAR for social robots.  

2.3.1 Multimodal DL Networks for HAR 

Recent HAR research has focused on using data specific operations such as graphical convolution 

networks (GCNs) [136], [137] and learned fusion techniques [138] to combine multimodal inputs 

in order to extract complimentary features. These methods have combined a variety of inputs 

including human skeleton pose information [136], [137], RGB video [136]–[138], and motion 

information between frames [138].  
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In [136], both RGB video and 3D poses were used to extract visual features for spatial 

embedding and pose driven attention using a Video-Pose Network consisting of a combination of 

GCNs and spatio-temporal convolution networks in order to classify indoor activities, such as 

putting on headphones and clapping for monitoring of human behavior. End-to-end training with 

3D ConvNet using a regularized loss term combining cross-entropy, embedding loss, and an 

attention regularizer resulted in significant improvements in classification accuracy for subtle 

actions such as reading compared to single mode networks using only RGB video streams. In 

[137], the architecture proposed in [136] was further extended through the incorporation of two 

separate distillation training sessions. Distillation transferred knowledge of pose to the feature 

extraction layers for improved model speed using only the RGB video input. 

In [138], an RGB video stream and a motion information stream obtained from persistence of 

appearance (PA) were both used by a spatio-temporal convolutional neural network (CNN) with 

modality specific attention and late fusion for ADL classification. Training was accomplished 

using classification loss to learn consensus attention between the two modalities. Testing on 

segmented/unsegmented RGB video data of users performing ADLs, such as eating with a fork, 

showed improved accuracy over using a single modality.  

2.3.2 Embeddings of Feature Spaces for HAR 

Embeddings of feature spaces are used to learn low-dimensional vector representations of ADLs 

to reduce the dimensionality of categorical information. They are used for data visualization [139], 

and classification [136], [140]–[142]. 

In [139], accelerometer and gyroscope sensory data from users completing ADLs was reduced 

to an embedding vector of activity features. An Autoencoder based on a Long-Short Term Memory 

Recursive Neural Network architecture was trained to reduce and reconstruct the sensory data for 

training the embedding. Temporal features were embedded using a sequence of recursive 

convolutions for activities of variable lengths. 2D Visualization of the embeddings based on 

stochastic neighbor embedding (t-SNE) [143] showed that the embedded features had improved 

inter-class separation compared to handcrafted features for the same data.  

In [136], feature embeddings were used for multimodal fusion to improve the classification 

accuracy of the Video-Pose Network. An intermediate spatial embedding space was developed by 
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combining RGB video visual features and pose spatial features. Embedding loss was added to the 

training loss function which improved inter-class separation.  

In [140], data from inertial measurement units (IMUs) was mapped to a feature embedding 

vector to enable classification of sparsely labeled data. Feature embeddings were derived from the 

temporal input using CNNs and contrastive learning. Using the feature embeddings on partially 

labeled data for movement activities showed classification accuracy improvements over existing 

conventional autoencoders. In [141], a self-attention based approach was developed using a 

hierarchical window encoder (HWE) trained on temporal activity data using reconstruction loss to 

create feature embeddings. These embeddings were used for both classification training with 

unlabeled data and open-set recognition to identify unknown activities. A dense neural network 

with non-linear activations encoded and decoded the embedding features using an autoencoder 

architecture with an activity embedding vector. Training results showed improvements in closed-

set classification over conventional autoencoders. Testing with unknown activities confirmed the 

ability of the network to identify such activities.  

Robotic object manipulation has also used embedding vectors for classification. For example, 

in [142], point clouds of objects, natural language instructions, and robot manipulation trajectories 

were embedded in a common embedding space using linear deep neural layers with non-linear 

activations. The feature embeddings were used to select a new manipulation trajectory based on 

the embedding of an object-instruction pairing. Results showed improved accuracy and speed 

compared to embedding models using the same approach with larger and more complex 

embedding spaces 

2.3.3 HAR for Social Robots 

HAR has been used by social robots in human-robot interactions for numerous applications 

ranging from playing games to companionship [144]. A handful of SARs have been used to 

classify and track users performing ADLs using unimodal RGB video [52], [58], unimodal pose 

data from a depth sensor [39], [145], and multimodal data from RGB video and object-based 

sensors [52]. These activity tracking systems mainly use visual and depth data [39], [52], [58], 

[145] or natural language [39] classifiers, and heuristic rules [52], [58] to monitor and provide 

feedback to users via SARs. 
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In [52], the human-like Brian robot was used to facilitate meal eating of older adults. A sensor 

suite was used consisting of Wii motes for tracking custom IR utensils, a Kinect sensor for 

detecting user engagement from pose, and a meal tray with embedded load cells. The user and 

activity state, determined using the sensory information and Haar feature-based cascade classifiers 

and decision rules, and the robot state, based on task progression history, were used by a finite 

state machine (FSM) to determine the robot’s assistive behavior. In [58], the Bandit robot was 

used to engage older adults in workout, imitation, and memory games. User hand and elbow joint 

positions were classified using an image segmentation algorithm and heuristic exercise rules. They 

were then used by an FSM to provide verbal praise by the robot for successful actions and 

corrections for unsuccessful actions.  

In [145], the Leia robot was used to guide users in upper body exercises. An RGB-D sensor 

extracted user poses and a K-nearest neighbors classifier was used to classify these poses to 

determine exercise completion. An FSM was used to determine robot behaviors based on the 

exercise goal and user state. In [39], the human-like Casper robot learned to assist users in the 

ADL of making a cup of tea. The robot used a combination of Learning from Demonstration and 

reinforcement learning to determine its task-related assistive behaviors based on user cognitive 

functioning and activity states. Learning of task-related behaviors was based on demonstrators’ 

speech using the onboard microphone and IBM Watson Speech-to-Text API [83] as well as 

gestures obtained by a depth camera and tracked using OpenNI [146].  

2.4 Chapter Summary 

This chapter began with a review of existing social robots for assisting older adults. Design features 

of appearance, interaction modes, and behaviors were explored in terms of their use in existing 

robots and their effect on users as determined from a variety of studies. Additionally, SAR overall 

autonomy was found to be a barrier to long-term deployment as existing robots are designed for 

one or a few tasks in a structured environment. Identifying dressing as a potential ADL for a novel 

wearable interaction mode, existing technology for dressing and wearables for SARs were then 

discussed. Lastly, motivated by the limitations of existing SAR behaviors (only designed for a 

single ADL) and SAR autonomy presenting a barrier to long-term use, existing research on activity 

recognition was reviewed. Findings from each section of this review motivate the development of 

new technologies that increase SAR ability and intelligence for providing ADL assistance.  
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CHAPTER 3 

3. A SOCIAL ROBOT AND WEARABLE SYSTEM FOR 

DRESSING ASSISTANCE 
The novel Socially Assistive Robot-Wearable system architecture is presented in Figure 1. The 

Strain Sensor Smart Clothing is used to obtain resistance signals for tracking user actions during 

the dressing activity. These signals are used by the Joint Angle Mapping Model to estimate user 

joint angles. Joint angles are then provided to the Dressing Step Classifier for DL classification of 

dressing actions. Dressing actions are used by the Robot Adaptive Behavior Deliberation module 

to determine appropriate assistive behaviors for the socially assistive robot Leia to display using a 

combination of verbal and non-verbal communication modes via its low-level controllers in the 

Actuation module. This work was first published in [50] and herein this thesis focuses on the 

developments as they relate to the socially assistive robot and system integration. Namely, the 

Robot Adaptive Behavior Deliberation module and resulting robot behaviors are discussed.  

 

Figure 1. Socially assistive robot-wearable system for dressing assistance proposed architecture [50]. 

3.1 Robot Adaptive Behavior Deliberation 
The robot adaptive behavior deliberation module uses a MAXQ reinforcement learning 

hierarchical method [147] to determine Leia’s assistive behavior based on the user state and past 

user actions. MAXQ is used as it encompasses: 1) temporal abstraction to allow for variable 

dressing step completion times, 2) state abstraction for reducing the user dressing state space at 

each level to only relevant variables, and 3) subtask abstraction for grouping similar actions (e.g., 

Put Through groups “left arm through”, “right arm through”, and “head through” steps) and further 
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reduces the state space. The MAXQ hierarchical task graph showing the Markov decision process 

(MDP) decomposition for the Root Task of dressing is shown in Figure 2.  

 

Figure 2. MAXQ socially assistive robot-wearable system dressing task graph [50]. 

For each level of the MAXQ graph, the associated subtasks have a defined set of relevant state 

variables s and a terminal condition T, where all variables are expressed using one-hot encoding. 

State variables and their descriptions are presented in Table 1. For each level of the hierarchy, s 

and T are defined as: 1) Root Task, s(cd, cu), T: cu = cd; 2) Identify Clothing, s(c, pd, pu), T: pu = 

pd, 3) Put Through/Fasten, s(p, u), T: u = p, and 4) Instruct/Reengage/Correct, s(c, p, u), which 

terminates on completion of a primitive action (B1-B15). 

Table 2. Behavior utterance and gesture examples [50]. 

State Variable Description Example 
cd the set of clothing items in an outfit {“t-shirt”; “button up shirt”; “jacket”} 
cu the set of clothing items on the user {“t-shirt”} 
c the current clothing item for assistance “button up shirt” 

pd the set of dressing steps for c {“left arm through”; “right arm through”; 
“button up”} 

pu the set of dressing steps completed by 
the user {“left arm through”; “right arm through”} 

p the current dressing step for assistance “button up” 

u the user state expressed as the most 
recently completed dressing step “right arm through” 
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Primitive actions are completed by Leia using a specific behavior expressed using both verbal 

utterances and non-verbal gestures in the form of body language to emphasize spoken ideas [148]. 

Primitive actions Instruct (B1-B5), Reengage (B6-B10), and Correct (B11-B15) are selected based 

on the previous user step u and current dressing step p. When u = p, the user completed the desired 

dressing step and Leia instructs the next step. When u = ia (representing inaction), Leia reengages 

the user to complete the current step p. When u ≠ p or ia, the user has completed an incorrect 

dressing step and Leia helps correct this error by asking the user do undo the previous step.  

Robot behaviors for primitive actions (B1-B15) were selected based on different compliance 

gaining behavior (CGB) strategies [149], [150] including logic, emotion, direct request, 

cooperative, and motivation. Namely, the 5 potential robot behaviors for Instruct (B1-B5), 

Reengage (B6-B10), and Correct (B11-B15) include one of these CGB strategies. Logic and 

emotion strategies are based on HRI research that has shown these two CGBs are most effective 

for social robots in persuading users [150]. The remaining three strategies are based on the clinical 

experience of caregivers assisting older adults with the dressing task [135] and guidelines provided 

by the Alzheimer’s Society for effective dressing assistance which focus on clear communication, 

creating a sense of teamwork, and providing consistent positive verbal encouragement [151]. The 

combination of HRI research and clinical experience as selection criteria for the robot behaviors 

was used to include behaviors that consider the robot form and function. Since dressing task 

assistance is a new domain for SARs, behaviors are not ranked or given any initial preference 

during behavior deliberation. Examples of each behavior strategy for the Instruct behavior (B1-

B5), the Reengage behavior (B6-B10), and the Correct behavior (B11-B15) are presented in Table 

2. For a specific behavior strategy type, the robot’s speech differs, however the gesture is the same. 

Table 3. Behavior utterance and gesture examples [50]. 

Behavior Strategy Utterances Gestures 

Logic 

For B1 (instruct): “My sensors tell 
me it is time to button up your 
dress shirt.” 
 
For B6 (reengage): “My sensors 
tell me you are disengaged with the 
task. Please finish buttoning up 
your dress shirt.” 
 
For B11 (correct): “My sensors tell 
me you made a mistake while  
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Behavior Strategy Utterances Gestures 
doing up your buttons. Please undo 
the buttons on your dress shirt.” 

References self 

Emotion 
(Happy) 

For B2 (instruct): “It would make 
me happy if you buttoned up your 
dress shirt.” 
 
For B7 (reengage): “It would make 
me happy if you were reengaged in 
the task and buttoned up your dress 
shirt.” 
 
For B12 (correct): “There was a 
mistake while doing up your 
buttons. It would make me happy if 
you undid the buttons on your 
dress shirt.” 

 
Expansive and open gestures 
and green eye color for positive 
emotion 

Direct Request 

For B3 (instruct): “Please button up 
your dress shirt.” 
 
For B8 (reengage): “Please 
reengage in the task and button up 
your dress shirt.” 
 
For B13 (correct): “There was a 
mistake doing up your buttons. 
Please undo the buttons on your 
dress shirt.”  

References user by pointing 
towards them 

Cooperate 

For B4 (instruct): “Let’s work 
together to button up your dress 
shirt.” 
 
For B9 (reengage): “Let’s reengage 
in the task and button up your dress 
shirt.” 
 
For B14 (correct): “There was a 
mistake while doing up your 
buttons. Let’s undo the buttons on 
your dress shirt.”  

References user and self 
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Behavior Strategy Utterances Gestures 

Motivate 

For B5 (instruct): “Please button up 
your dress shirt. You can do it!” 
 
For B10 (reengage): “Reengage in 
the task and button up your dress 
shirt. I know you can do it.” 
 
For B15 (correct): “You made a 
mistake while doing up your 
buttons, but that’s okay. To fix it, 
please undo the buttons on your 
dress shirt.” 

 
References user while 
performing head nodding action 
to show support 

 

3.2 Performance Testing 

Performance testing was done on the different modules of the architecture and the overall robot-

wearable system to evaluate reliability for completing designed functionality, namely behavior 

adaptation, dressing step classification, and upper body dressing assistance. 

3.2.1 Robot Adaptive Behavior Deliberation Cumulative Reward and Convergence 

The performance of the Behavior Adaptation Model was evaluated based on: 1) convergence of 

the MAXQ learning model in learning an optimal policy for user dressing, and 2) online task 

performance measured by cumulative reward per dressing iteration. A dressing iteration is defined 

as the entire action set to put on all clothing items in an upper were modeled with varying actions 

and preferences. For each user, their compliance, engagement, and frequency of mistakes were 

defined using probability rates dependent on their preferred robot behavior. Rewards at each level 

of the task hierarchy were given as follows: Root Task: ±5, Identify Clothing: ±3, Put 

Through/Fasten: ±1, Instruct/Reengage/Correct (Success): 0, Instruct/Reengage/Correct 

(Failure): -1. Offline training was performed with U1 to evaluate convergence of MAXQ model 

training, while U2-U5 were used for online testing. 

The values of the MAXQ learning parameters were set to: 1) learning rate α = 0.01; 2) 

exploration/exploitation trade-off ε = 1 - log (1 + λi) for ε > εmin , where εmin = 0.05 to maintain the 

ability to adapt to changes in user preferences over time; and 3) rate of logarithmic change λ = 0.1. 
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The MAXQ model was trained for 10,000 iterations on U1. It converged to the optimal policy 

within 10 iterations. Testing with U2-U5 to determine the model’s online adaptation capabilities 

to new users and preferences is shown in Figure 3. A higher cumulative reward indicates fewer 

number of steps taken by the user to dress. A hierarchical system was also designed for comparison 

purposes, which uses the task structure and state transitions of the MAXQ, however, selects a 

random behavior type instead of learning behavior preferences. 

As can be seen in Figure 3, the overall cumulative reward for MAXQ increases in all cases 

compared to the initial dressing task iteration as Leia learns behavior preferences. Acceptable 

performance is achieved for the MAXQ method as behavior selection converges in terms of 

cumulative reward and is optimized for each user. Furthermore, the cumulative reward for MAXQ 

compared to the hierarchical system without behavior preference learning shows improved task 

performance when behavior learning is used for users with weak preferences (e.g., U2 and U3) 

and strong preferences (e.g., U4 and U5). 

 

Figure 3. Cumulative reward of users for measuring task performance given by MAXQ and a hierarchical 

system without behavior preference learning [50]. 
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3.2.2 Dressing Step Classifier Accuracy 

The classification accuracy of the Dressing Step Classifier was obtained using the test dataset 

collected from a cognitively healthy user performing dressing in upper body outfits that used all 

dressing actions (e.g., t-shirt, button up shirt, and jacket). The labelled dressing step test set 

contained 122 evenly distributed samples of 25 joint angle arrays. Classification accuracy is shown 

as a confusion matrix in Figure 4 with an overall classification accuracy of 95.1%. The “head 

through” class had a 96% accuracy and the lowest classification accuracy for all dressing steps 

was 91% for “left arm through”. The success rate of 95.1% achieved by the smart clothing for 

dressing step classification is higher than those achieved by other smart clothing PZT sensors. For 

example, in [152], four PZT sensors integrated in a loose-fitting jacket had an accuracy of 90.9% 

when classifying 5 postures and activities from sensor signals, including standing, running, sitting, 

lying, and walking. 

 

Figure 4. Dressing step classifier test accuracy in confusion matrix [50]. 

3.3 Demonstration Study 

A robot demonstration study, initially published in [50], was conducted during technology 

conferences, where the capabilities of the socially assistive robot-wearable system were presented 

to assistive technology, robotics, medical, and healthcare researchers and entrepreneurs to gain 
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their insights on the overall system design and functionality. The robot demonstration study 

consisted of one researcher demonstrating putting on and buttoning a dress shirt with social 

assistance from Leia, while wearing the smart sensors, Figure 5. The study was approved by the 

University of Toronto’s Health Sciences Research Ethics Board (REB), protocol #43592.  

 

Figure 5. Demonstration setup at technology conference [50]. 

3.3.1 Participants 

Participants were recruited during the exhibitions for two technology conferences. The first 

conference was on assistive technology for older adults and consisted of experts in assistive 

technology and device development, healthcare and medical professionals and researchers. The 

second conference was on AI technology and consisted of researchers and engineers working at 

tech companies. Approximately 100 participants observed the robot demo, and thirty-two 

participants filled in the questionnaire. The participants ranged in age from 20-60 years old, with 

the majority being in the 20-29 age group.  

3.3.2 Procedure 

The demonstration consisted of Leia introducing itself and assisting the demonstrator in putting 

on a dress shirt. The robot randomly used two of its five behavior strategies (outlined in Table 1 

of Section 3.4) to guide the demonstrator in the dressing task. A video of the demonstration is 

provided here: https://youtu.be/Klf0O-OSEik 
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3.3.3 Measures 

A 5-point Likert Questionnaire (1-Strongly Disagree 3-Neutral, 5-Strongly Agree) was 

administered to participants after the demonstration was completed, Table 3. The questions were 

adapted from the Almere model [153]. They included statements on the following attributes: A1 – 

perceived usefulness (Q1-3), A2 – perceived ease of use (Q4-6), A3 – attitude towards (Q7-10), 

and A4 – satisfaction with socially assistive robot-wearable system (Q11-12). It was chosen to 

include a satisfaction attribute to measure stakeholder satisfaction of the system to assist the target 

population with dressing, namely individuals with cognitive impairments.  

Table 4. Study questionnaire organized by attribute with descriptive statistics [50]. 

Construct Question Median (x̃) IQR Min Max 

Perceived 
Usefulness 

Q1. Using the social robot-wearable 
system would make it easier to dress 4 1 1 5 

Q2. I would find the social robot-wearable 
system useful for dressing 4 2 1 5 

Q3. Using the robot system would increase 
dressing performance 4 1 1 5 

Perceived 
Ease of 

Use 

Q4. I find the social robot-wearable system 
easy to use 4 2 1 5 

Q5. The interaction with the social robot-
wearable system is clear and 
understandable 

5 1 2 5 

Q6. The social robot-wearable system is 
easier to use than other dressing aids 3 1 1 5 

Attitude 
Towards 

Q7. I think the social robot-wearable 
system can adapt to what is needed for the 
dressing task 

4 1 1 5 

Q8*. If I (or someone I know) used the 
social robot-wearable system, I (they) 
would be afraid to make mistakes 

2 1 1 4 

Q9. The social robot-wearable system 
looks fun to use 5 1 2 5 

Q10. The wearable sensors appear to be 
comfortable to wear 3 2 1 5 

Satisfaction 

Q11. I would recommend the social robot-
wearable system to a friend 3 1.25 2 5 

Q12. I think it is a good idea to have the 
social robot-wearable system 4 1 2 5 

* Negatively worded question 

3.3.4 Results 

A Shapiro-Wilk test confirmed the data was non-normal (p<0.05). Statistical analysis was 

conducted using the non-parametric Mann-Whitney U tests (MWU). Overall study results showed 
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positive ratings for the majority of the questions on perceptions of the socially assistive robot-

wearable system, Table 3 and Figure 6. A1 had consistent positive ratings and internal consistency 

between question ratings (x̃=4 for Q1- 3). Attributes A2, A3, and A4 showed greater intra-attribute 

question rating variation with some strongly-agree ratings (x̃=5 for Q5 and Q9), some agree ratings 

(x̃=4 for Q7 and Q12), and neutral ratings (x̃=3 for Q6, Q10, and Q11). These ratings showed that 

participants noted the system was easy to understand and use, as well as being fun and a good idea. 

Neutral ratings were given for questions on comparisons with other tech, comfort, and 

recommendation to a friend. It is important to note that the negatively worded Q8 (x̃=2) showed 

that stakeholders believed that users would be able to use the robot-wearable system and would 

not be afraid in using it for the dressing task. 

 
Figure 6. Box and whisker plot of questionnaire ratings for each question for all participants. Median is 

represented as bold lines IQR is represented by the boxes [50]. 

Gender 

Twenty-seven of the participants provided their gender as either Female (n=16); Male (n=10); or 

Other (n=1). The descriptive statistics are shown in Figure 7. MWU tests were conducted to 

determine if there were any statistically significant differences between the ratings from male and 

female participants for all questions. A statistically significant difference was found for Q7- “I 

think the social robot-wearable system can adapt to what is needed for the dressing task”, between 

males (x̃=4, IQR=0) and females (x̃=4, IQR=1), MWU test: Z=2.319, p=0.020. There was also a 
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statistically significant difference for Q10- “The wearable sensors appear to be comfortable to 

wear”, between males (x̃=4, IQR=1.25) and females (x̃=3, IQR=1.75), MWU test: Z=2.013, 

p=0.044. Namely, males provided more positive ratings than females for these questions. 

 

Figure 7. Box and whisker plot of questionnaire ratings between females and males. Median is represented as 

bold lines IQR is represented by the boxes [50]. 

Participant Feedback 

Participants also provided comments with respect to their overall experience. Similar comments 

were grouped together into the following categories: 1) system appearance such as “I like the 

make/external body of the robot, makes it very approachable.”; 2) recommendations for future 

development including “Wonderful. Look into patentable systems and commercialization - cost to 

make the robot.”; and 3) appraisal for potential users such as “The robot is super cute and I see 

how this may be helpful for those who may be cognitively vulnerable and may not know how to do 

simple daily tasks.” 

3.3.5 Discussions 

In general, stakeholders noted the usefulness of the prototype and confirmed its use for the intended 

population with overall positive ratings in the questionnaire. This was supported by comments 

such as “I would recommend it to a friend with mobility or cognitive difficulties.” Statistically 
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significant differences between males and females were found for two (Q7 and Q10) of the four 

questions in A3 with males having higher ratings. The tendency for males to have a more positive 

attitude towards socially assistive robots has also been found in other care application studies 

[154], [155]. Gender differences in attitudes towards wearable technology for health have been 

application dependent. For example, males have shown higher intent to use smartwatches while 

having lower intent to use skin protection wearables than females [156], [157]. This application-

based variation makes the smart clothing for dressing a unique contribution in this field. 

3.3.6 Considerations and Limitations 

The demonstration study took place in exhibition areas with crowds of people walking by and 

stopping to observe. Due to this scenario setup, it was not feasible to have everyone fill in the 

questionnaires, however, many verbal positive responses were received related to system 

usefulness and ease of use. In general, people were engaged in the demonstration. They reacted to 

the robot’s behaviors by waving at Leia, speaking to the robot (e.g., “hello”, “what’s your name?”, 

“hi Leia”), laughing, nodding, and smiling indicating a positive experience and sustained attention. 

While people did not directly interact with the developed system, the robot’s verbal and nonverbal 

communication modes made the interaction easy to understand and the robot’s intent was clear as 

mentioned by many who viewed the demonstration. Social robot demonstrations have been used 

to display robot capabilities in the early stages of development for acquiring feedback from 

potential users [158] and stakeholders such as caregivers [159] and therapists [160]. The robot 

demonstration study took place at conferences which provided access to a diverse group of 

stakeholders in a single location. 

Participant pool bias may be present in the feedback received from relevant stakeholders given 

the conferences were focused on various types of technology. However, stakeholder familiarity 

with different types of technology reduces the risk of new information bias, as it has been shown 

that respondents unfamiliar with new technology can actually rate novel systems more positively 

[161]. Completion of the questionnaire required individuals to approach the demonstration. This 

may result in response bias where more extreme responses, both positive and negative, are received 

from respondents who actively seek to provide feedback [162]. However, for the questionnaire 

results, even though some extremely positive and negative responses were observed, the overall 
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median ratings showed that the majority of responses were moderate, suggesting response bias did 

not have a significant effect on results. 

3.4 Chapter Summary 
This chapter presented the first socially assistive robot-wearable sensors system to provide 

dressing assistance through social HRI. A novel robot-wearable architecture has been developed 

to recognize and classify user dressing actions and provide personalized prompts and feedback. 

The assistive robot uses a MAXQ hierarchical learning method to learn appropriate assistive 

behaviors to guide the user through a sequence of upper body dressing steps. Experiments were 

conducted that validate the performance of the robot-wearable system to identify and effectively 

respond to a variety of user states and dressing step actions. Furthermore, a robot demonstration 

study with stakeholders found that overall, they had positive perceptions and attitudes towards the 

socially assistive robot-wearable system, in particular with respect to its usefulness with the 

intended user population.  

  



48 
 

CHAPTER 4 

4. ADL RECOGNITION FOR SARs 
This work was initially published in [51]. The objective of the deep learning human activity 

recognition and classification architecture is to identify ADL classes for SARs to assist with and 

monitor performance during activity completion.  

4.1 Network Architecture 

The overall proposed architecture is presented in Figure 8. Environment, action, and object 

information is obtained from RGB-D videos. These videos are separated into multiple inputs to 

extract pertinent features. Namely, a downsized RGB video is obtained from the RGB channels 

and used by the Video Backbone Network to obtain a combination of scene and motion features. 

The 3D pose of the user is simultaneously obtained from the RGB video and depth streams and 

used by the Pose Backbone Network to obtain 3D user motion features independent of the scene 

context. Single RGB images are also extracted and used by the Object Detection Network to obtain 

semantic features for objects used in performing the ADLs. 

 
Figure 8 - Proposed DL ADL recognition and classification architecture [51]. 

The extracted feature set containing scene, motion, and semantic features from these backbone 

networks is then utilized by the Spatial Mid-Fusion Module to reshape and spatially scale the 

features for alignment before concatenation. This module condenses the features to a one-

dimensional ADL embedding vector. The embedding vector is used by the Dense Neural Layer to 
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determine the appropriate ADL class. The following subsections discuss these modules in more 

details. 

4.1.1 Video Backbone Network 

The objective of the Video Backbone Network is to extract scene and motion features, Figure 9. 

The network takes as input a sequence of 13 video frames of size 182 x 182 pixels by down 

sampling and cropping from the 30 fps RGB video stream. The X3D small network [163] is 

adapted herein as the feature selection method as it is a deep network designed for optimized video 

feature extraction. The X3D small network progressively expands spatial and temporal 

convolutional layers based on the ResNet architecture [164] in dimensions of temporal duration, 

frame rate, spatial resolution, width, bottleneck width, and depth in order to iteratively add model 

depth to achieve accuracy while decreasing complexity [163].  

The layers of the X3D small model used herein are ResNet Stem which consists of a 2D spatial 

convolution for spatial feature extraction, a 1D temporal convolution for temporal feature 

extraction, batch normalization [165] to increase training speed and model generalizability, and 

rectified linear units (ReLU) activation [166] to introduce non-linearities while avoiding vanishing 

or exploding gradients. Four successive ResNet Stages, each with varying branch quantities and 

compositions follow as demonstrated in Figure 9. The output of the last ResNet Stage of X3D 

small is 13 x 192 x 6 x 6 (time, channels, feature grids) where each 6 x 6 video feature grid has 

inherent spatial understanding relative to the initial video. 
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Figure 9 - Video backbone network architecture [51]. 

An ADL Feature Extractor was designed to select the most significant video features for 

classifying ADLs using the general extracted features from the X3D layers as input. The ADL 

Feature Extractor uses a spatial convolution for geometric features, a temporal convolution for 

motion features, batch normalization for generalizability and ReLU activation for non-linearity. 

The final output is ADL feature grids of size 13 x 25 x 6 x 6.  

4.1.2 Pose Backbone Network 

The Pose Backbone Network extracts scene and scale invariant pose motion action features. The 

input matches the temporal sampling of the Video Backbone Network with 13 frames, each with 

25 skeleton joints having xs,ys,zs positions. The Pose Backbone Network was designed to consist 

of parallel paths for nearby, faraway, and positional joint motion features using GCN [167], self-

attention [168], and skip connections, respectively, as shown in Figure 10. The parallel branches 

are concatenated into a single tensor and passed to another GCN stage for joint variant motion 

features. The reshaped output is 13 frames and 25 channels of 6 x 6 feature grids for multimodal 

fusion, where each of the 25 channels is associated with a specific human skeleton joint.  GCN 

stages are used to extract motion features independent of the environment by using message 

passing convolutions between nodes. In this work, human skeletons are transformed to a graph 

datatype where the nodes represent the 25 discrete skeleton joints and edges represent physical 

connections between adjacent joints.  

For the GCN stage in the parallel section, the input data is the xs,ys,zs position of each skeleton 

joint which is convolved with positions of adjacent joints for spatial feature extraction. In parallel, 
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the same joint position data is also used in the self-attention module to transfer the data between 

nodes in the graph using a summation of weights. To determine the weights, the self-attention 

module assigns each node in the graph a query, key, and value grouping learned during training 

[168]. For each node, queries are compared to the keys of other nodes and the resulting matching 

scores are multiplied by the attention node values using a dot-product of weights. The skip 

connection is a direct data transfer path to pass the positional input data to the next layer. The 

second GCN stage uses message passing to generate joint dependent motion features. The 

dimensions of the skeleton joint data after the second GCN stage are 13 x 25 x 36. Reshaping is 

then performed on pose motion features in order to match the grid shape of the Video Backbone 

Network output so that the two feature grids can be concatenated in the Spatial Mid-Fusion 

Module. 

 
Figure 10 - Pose backbone network architecture [51]. 

4.1.3 Object Detection Backbone Network 

The Object Detection Backbone is used to identify and localize objects in the scene during ADL 

classification. A rolling window approach is used to ensure a new RGB image is acquired with 

each timestep. The RGB images have an input size of 3 x 1920 x 1080 to use the full resolution 

available from the video stream to improve detection accuracy. The Object Detection Network 

uses YOLOv5m60 [169] to extract object features from ADL-based home environments, Figure 

11. YOLOv5 was selected as it is a state-of-the-art real-time detector for household objects.  
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Figure 11 - Object detection backbone network architecture (YOLOv5) [51]. Adapted from [169]. 

YOLOv5 uses: 1) a Cross Stage Partial (CSP) Network [170] approach to Darknet [171] for 

extracting high-level spatially invariant features while avoiding unnecessary duplicate gradients, 

2) a Path Aggregation Network (PANet) [172] neck layer to use spatial features from each network 

layer to segment objects, and 3) three individual convolution layers to output object confidence 

scores. In Darknet, Spatial Pyramid Pooling (SPP) is used to perform information aggregation on 

inputs with varying sizes [173]. The output of the Object Detection Backbone Network is parsed 

to yield a list of object classes and their xO,yO locations. Object classes that were obtained from the 

COCO dataset [174] included indices 0 (person) and 31-80 (varying household objects, e.g., chair, 

bottle). A low confidence threshold of 0.25 was used to reduce the potential of false positives from 

scene and object variation.  

4.1.4 Spatial Mid-Fusion Module 

A Spatial Mid-Fusion module was developed to reshape, scale, and concatenate geometric, 

motion, and semantic features from the three Video, Pose, and Object Backbone Network 

modalities, Figure 12. The size of the input to the Spatial Mid-Fusion module is 14 timesteps (13 

temporal frames from video/pose and 1 frame for object detection) with 50 channels of feature 

grids of size 6x6; 14 x 50 x 6 x 6. The Spatial Mid-Fusion consists of: 1) a skip connection for 

video features to propagate the video feature grids to later layers, and 2) reshaping and scaling on 

both the skeleton joint motion data for pose features and on the object positions for spatial features. 

A concatenation step combines video and pose features along the channel dimension and then 

combines the object location features in the temporal dimension. 
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Figure 12 - Spatial mid-fusion, ADL embedding vector, and dense neural layers modules for ADL 

classification [51]. 

The pose spatial reshaping and scaling sub-module uses a series of mathematical operations 

to add spatial context to the pose features relative to the video spatial context, Figure 13. It takes 

as input the output of the Pose Backbone Network (6 x 6 feature girds x 25 skeleton joints x 13 

time steps) and uses the xs,ys position of each skeleton joint for creating 2D distance maps. For 

each node, these distance maps are determined by first initializing a Spatial Map S of dimensions 

6 x 6 x 2 which contains x,y positions from -1 to 1 in equal increments. Next, the inverse Euclidian 

distances are calculated between the normalized xs,ys skeleton joint node position and each x,y 

position in S to obtain the distance grid D of size 6 x 6. D represents the position of the node as a 

heatmap, where larger values are closer to this node in 2D space. Given a joint feature grid F, the 

new feature grid F’ is calculated as F’ = D × F.  

 
Figure 13 - Pose spatial reshaping and scaling operations. 
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The object detection spatial reshaping and scaling sub-module uses the list of potential objects 

and their xO,yO locations. For each object, an identity matrix I and a Spatial Map R are initialized 

identical to S with sizes of 6 x 6 and 6 x 6 x 2. Next, the inverse Euclidian distances between the 

object location xO,yO and each x,y position in R are used to form the distance grid E of size 6 x 6. 

The object feature grid G is then calculated as G = I × E. If multiple objects of the same class 

exist, object feature grid G’ is G’ = G’ × E, where E is the distance grid for each successive object 

within the same class.  

The new ADL Feature Reducer consists of: 1) a 2D spatial convolution layer for spatial feature 

extraction between newly fused feature grids, 2) a 1D temporal convolution layer for temporal 

feature extraction and batch normalization, and 3) (ReLU) activation. Data is then flattened into a 

single vector of length 25,200 and passed to a linear neural layer to condense the features and 

create spatio-temporal dependences. Within the linear layer, batch normalization improves 

generalizability, leaky ReLU [175] activation limits vanishing gradients, and a dropout rate of 0.2 

decreases overfitting [176]. The output is the ADL embedding vector of size 128.  

ADL Embedding Vector: The ADL Embedding Vector is a low-dimensional representation 

of a specific ADL containing geometric, motion, and semantic features that are dependent on 

action timing, locations, motions, and object interactions. The size of the embedding vector follows 

the dimensionality reduction of the network architecture such that classification accuracy is 

unaffected. The nature of the embedding space results in ADLs with feature similarity being close 

in proximity to one another using metrics such as Euclidian distance. The ability to compare 

features in a low-dimensional space enables contextualization of unseen ADLs based on which 

existing ADL centroids have the lowest distance to the embedding of the new ADL. Within an 

ADL class, variations in intra-class embedding vector values determine if an ADL is being 

performed correctly overtime. ADL embeddings learned from relatively small sets of training data 

enable generalization within the range of observable features within the dataset. Given that datasets 

for supervised learning are diverse, the ADL embedding can generalize to new data within the 

known feature variations, eliminating the need for fully supervised training and decreasing data 

cost.  

4.1.5 Dense Neural Layer 

The Dense Neural Layer consists of batch normalization and a single fully connected linear layer. 

These determine scale independent feature interactions within the ADL embedding vector for 
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classification. A dropout rate of 0.5 is used to classify the ADL embedding vector to an ADL class. 

The output of the Dense Neural Layer is the probabilities for each of the ADL classes.  

4.1.6 Transfer Learning 

Deep transfer learning is used for both the Video Backbone and Object Detection Backbone 

Networks. For the Video Backbone Network, transfer learning uses the first five layers of X3D 

small as a spatio-temporal feature extractor. X3D small is pretrained for classification of human 

activities from the Kinetics dataset [177]. For the Object Detection Backbone Network, the entirety 

of YOLOv5 is pretrained on the COCO dataset [174] for precise location detection of everyday 

objects in diverse environments.  

4.2 Architecture Training 
Two variations of the architecture were trained using the ETRI-Activity-3D dataset [178] and the 

Toyota Smarthome with Refined Skeleton Data V1.2 dataset [179] to show robustness to different 

datasets. Training used gradient descent based on classification loss.  

ETRI-Activity-3D dataset (ETRI): This dataset contains 112,620 samples of 55 activities 

performed by 50 younger and 50 older adult subjects [178]. Each sample contains an RGB video 

stream, a depth map, and a skeleton sequence of 3D joint positions. ETRI is chosen as the primary 

dataset due to its inclusion of activities that directly correspond to typical ADLs performed older 

adults. It was used for hyperparameter tuning including the depth of layers and the number of 

convolutional channels. The ADL classes used in training include: eating food with a fork, taking 

medicine, drinking water, brushing teeth, washing hands, washing face, hanging out laundry, 

putting on jacket, taking off jacket, putting on/taking off shoes, and brushing hair.  

Toyota Smarthome with Refined Skeleton Data V1.2 dataset (Smarthome): This dataset 

consists of 31 activity classes in 16,000 samples of RGB video, depth video, and human skeleton 

pose sequences of older adults in smart home environments [179]. All 31 classes were used for 

training including basic activities such as “take pills” and compounded activities that have a 

distinct class such as “cook and cleanup” and “cook and cut”. As the pose data from Toyota 

Smarthome contains 13 skeleton joints rather than 25, architectural modifications to the GCNs 

were required.  

Both datasets were randomized using PyTorch random sampling utilities to ensure an even 

distribution of ADL classes between the training, validation, and test sets. The data was split into 



56 
 

the standard 70% training, 20% validation, and 10% testing sets. Training was accomplished with 

a learning rate of 2 x	10!", a batch size of 128 and 20 epochs. Cross entropy [180] was used for 

classification loss to consider class confidence. The Adam optimizer [181] was used to introduce 

stochastic behavior for faster convergence using gradient descent. Early stopping was used to 

select the model with the lowest validation loss. Training loss stabilized after 15 epochs for ETRI 

and 7 for Smarthome, where training accuracy was 99.9% and 99.7%, respectively. Validation 

accuracies of 86.9% were obtained for ETRI with optimal hyperparameter selection and 74.1% for 

Smarthome with more challenging data and without optimized hyperparameters. 

4.3 Testing 

Several experiments were performed to evaluate the the ADL detection and classification 

architecture. Network performance is measured by classification accuracy on test sets from the 

ETRI and Smarthome datasets. The effect of adding individual modalities was determined using 

an ablation study which compared the multimodal to dual-modal (as primarily used in the 

literature) and unimodal networks. For evaluating the quality of ADL vector embeddings, the ETRI 

test set embeddings were used to construct an embedding space for visualization using t-SNE and 

numerical analysis of distance metrics. Comparison to an embedding space developed solely using 

RGB video is conducted to measure the impact of multimodality on generating ADL vector 

embeddings; as embeddings using visual data are a fairly new procedure.  

4.3.1 Architecture Testing 

To evaluate classification accuracy, the multimodal network was tested on the two large 

aforementioned ADL datasets. On the ETRI test set with 11 ADL classes (with only basic 

activities) the low-latency architecture obtained an accuracy of 86.0%, the first to consider real-

time applications on ETRI [182]. On the Smarthome test set with high duration variation, basic 

and compounded activities, and 31 classes, the accuracy obtained was 73.5%. Cross-subject 

accuracies for Smarthome have been reported to be below 70% [138]. 

4.3.2 Ablation Study 

An ablation study was performed that removed single modalities from the three-modality 

architecture. Table 5 shows classification accuracy results for ETRI. Multimodality improves 

model accuracy compared to unimodal and dual-modal networks with the same architecture. The 
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proposed architecture benefits from combining complementary feature data for ADLs to improve 

classification performance.  

Table 5 - Model modality test accuracy [51]. 

Modality Test Accuracy  
Pose  73.7% 
RGB Video 75.1% 
Pose and RGB Video 82.4% 
Multimodal (Pose+RGB Video+Object) 86.0% 

 

4.3.3 ADL Embedding Performance  

The ADL embedding vector quality was evaluated using: 1) t-SNE [143] visualization to generate 

a low-dimensional and high contrast data representation based on neighboring samples by 

measuring similarities between points in the high-dimensional space, and 2) intra-class variance 

and inter-class distance. Embedding vectors were created using the ETRI test set and concatenated 

into the embedding space. 

The t-SNE method was used to map the 128 dimensions of the ADL vector embeddings to 2D 

cartesian plots. ADL vector embeddings from the multimodal network and the RGB video network 

were compared, Figure 14. RGB video was selected as the unimodal model of comparison since it 

showed higher accuracy than pose for ETRI as shown in Table 5. The t-SNE visualization shows 

that the multimodal network has more distinct groupings of similar classes. Namely, when using 

the RGB video modality, classes with similar environments and large-scale movements such as 

washing hands or face, and brushing teeth are overlapping in the embedding space (with low 

separation centroids). Using the multimodal embedding, the centroids have higher separation and 

visually superior inter-class distinction for similar ADLs. Figure 14 shows distinctions between 

clothing-based ADLs (putting on/taking off jacket) and consumption-based ADLs (eating, 

drinking, and taking medicine).  

Intra-class variance represents the variance in Euclidian distances of vector embeddings from 

the same class. On the other hand, inter-class distance measures distances between centroids of 

classes. Euclidian distance between embeddings was used as the metric as it provides equal 

weighting of features and computational efficiency [183]. Table 6 shows both intra-class variance 

and inter-class distance for the multimodal and RGB video embedding spaces. The multimodal 



58 
 

embedding space has less variation within classes and greater separation between classes. The 

lower maximum intra-class variance shows greater within class grouping in the embedding space 

for classes with high levels of activity variability such as drinking water which can occur in many 

different environments. The higher minimum inter-class distance (by a factor of 1.79) increases 

separation between the most similar ADL classes within the embedding space.  

Contextualization of unseen ADLs was tested by using 5 new samples for each of 5 new ADLs 

(25 inputs) from the ETRI dataset in the multimodal architecture to obtain their ADL embeddings, 

Figure 14. These activities included “doing freehand exercises”, “spreading bedding/folding 

bedding”, “putting on/taking off glasses”, “putting on cosmetics”, and “peeling vegetables”. The 

unseen ADLs of “putting on/taking off glasses” and “putting on cosmetics” are near the trained 

ADL of “brushing hair”, as they are similar ADLs with subtle arm movements. However, there is 

clear distinction between their distributions indicting that they are unique ADLs. For ADLs that 

have large distributions (e.g., doing freehand exercises), their centroids also show large separations 

from the centroids of known ADLs, again emphasizing uniqueness.  

 

Figure 14 - ADL embedding spaces [51]. 

Table 6 - Intra-class variation and inter-class distance for embedding spaces [51]. 

Modality Mean Intra-Class 
Variance 

Maximum Intra-
Class Variance 

Mean Inter-Class 
Distance 

Minimum Inter-
Class Distance 

RGB Video 0.67 0.99 3.97 1.90 
Multimodal 0.55 0.78 4.60 3.40 
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4.4 Discussion 
The objective of ADL classification for SARs is to enable intelligent and autonomous robots 

capable of perceiving and acting on user behavior. SARs with such capabilities can independently 

initiate assistive HRI without the prompting of a caregiver or user. Social robots with self-initiation 

behaviors can promote long-term use [184] and improve ease of use [45] as they interact with users 

similar to how caregivers do: observing and responding to user actions or needs as they happen. 

The work herein develops a network that may be used to: 1) classify the ADL task (e.g., eating 

food with fork, putting on jacket, etc.) in real-time using a light-weight multimodal DL classifier, 

and 2) classify the ADL type (e.g., seen, unseen, atypically performed) using the ADL embedding 

space which describes a numeric relationship between an observed ADL and ADLs already in the 

ADL embedding space (either from training data or seen online). Therefore, using this network, 

an architecture may be developed that enables a social robot to autonomously recognize and 

monitor multiple seen, unseen, and atypically performed ADLs in real-time and initiate appropriate 

assistive HRI.  

4.5 Chapter Summary 

This chapter presented the first multimodal DL architecture for multi-activity recognition for SARs 

to enable the proactive initiation of assistive behaviors. The novel architecture introduces the use 

of an ADL embedding space to uniquely distinguish between a known ADL being performed, a 

new unseen ADL, or a known ADL being performed atypically in order to assist people in real 

scenarios. This ADL perception information may be used to initiate robot assistive interactions. 

An ablation experiment was conducted to show higher ADL classification accuracy for the 

developed multimodal method over unimodal/dual-modal methods. Visualization of the ADL 

embedding space shows the inter-class separation necessary for online recognition and monitoring 

of seen, unseen, and atypically performed ADLs.    
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CHAPTER 5 

5. CONCLUSION AND FUTURE RECOMMENDATIONS 

5.1 Summary of Contributions 
This thesis aimed to contribute to the field of social robots by developing novel technologies for 

improved robot capability when assisting users with ADLs. To this end, two main contributions 

were developed as outlined below. 

5.1.1 A Social Robot and Wearable System for Dressing Assistance  

The novel socially assistive robot-wearable system was developed to provide dressing assistance 

using the integration of socially assistive robot and smart clothing technologies. The contributing 

work developed herein includes a behavior adaptation module to autonomously respond to user 

dressing states with the socially assistive robot Leia by providing customized assistive behaviors. 

Experiments conducted on individual modules and the overall robot-wearable system validate its 

accuracy and robustness in providing reliable dressing assistance. Furthermore, a demonstration-

based user study with stakeholders showed positive perceived usefulness, ease of use and attitudes 

towards the robot-wearable system.  

5.1.2 Activity Recognition for SARs 

The ADL classification DL architecture for SARs was developed to recognize ADLs and 

contextualize them with respect other known activities. The novel network: 1) uses RGB-video, 

3D user pose locations, and an RGB-image for object detection to extract complementation 

features and 2) develops an ADL embedding space that provides numerical distance measurements 

between ADLs. Experiments show the network has improved classification accuracy compared to 

single or dual modal approaches using an ablation study. Additionally, testing of the ADL 

embedding space shows it is capable of visually distinguishing new activities not seen during 

training. Using this ADL recognition on a SAR can enable real-time recognition and monitoring 

of seen, unseen, and atypically performed ADLs which may be used by the SAR to self-initiate 

assistive HRI without prior knowledge of which ADL will be performed.  

5.2 Recommendations and Future Research 
Assistive HRI studies may be conducted with users of diverse cognitive abilities for both of the 

developed systems to investigate performance with the intended userbase. Robot behaviors for 
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assistive dressing may be improved in terms of user engagement by incorporating dressing 

performance metrics into robot speech (e.g., motivating the user based on how quickly they have 

performed a dressing action during previous task completions). Classification accuracy of the 

activity recognition architecture may be improved by obtaining a larger dataset for training and 

testing that uses real-world environments. Overall, it is recommended to continue developing new 

interaction modalities for novel forms of HRI. It is also recommended to develop SAR intelligence 

architectures that build on ADL task and performance classification to enable long-term 

monitoring of user ADL ability and/or novel SAR behavior frameworks such as robot empathy.  

5.3 Concluding Statement 

This thesis presented the development of novel technologies for improving the design of social 

robots for ADL assistance. The proposed methods included a behavior adaption module to 

autonomously change robot behaviors based on user preferences during the task of dressing and a 

deep learning architecture which can enable the first real-time ADL recognition of both seen and 

unseen ADLs by a robot. Overall, this work explores and develops new ideas for designing social 

robots that expand the limits of social robot ability and intelligence.  
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