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Main message
• Homonymous visual field (VF) defects are usually an indicator of serious intracranial pathology 

but can often be subtle and difficult to detect

• AI is a valuable tool for the interpretation of complex datasets and we provide proof of principle 
for the use of deep learning in detecting homonymous VF defects on automated perimetry. 

• The developed deep learning model achieved an overall average accuracy of 87%, making it 
highly effective at identifying homonymous VF defects on automated perimetry.



Introduction
Homonymous VF defects are usually an indicator of serious intracranial pathology and their presence 
indicates the need for urgent neuro-imaging. While the most common cause of homonymous VF defect is 
stroke, other important causes including brain tumours, metastatic cancers, demyelinating disease, and 
traumatic brain injury can all be culprits.1,2

The field of artificial intelligence (AI) technology in medicine is an important avenue of innovation and is 
becoming increasingly prevalent in the field of ophthalmology for a wide range of clinical applications.3
Previous studies have explored its use in the analysis of fundus photos for detection of diabetic retinopathy4

and predicting progression of VF defects in glaucomatous optic neuropathy5. The use of AI in VF 
interpretation to date has been almost exclusively within the field of glaucoma. We identified the 
identification of homonymous defects as an important goal for an AI-based tool due to 1) the critical 
importance of detecting these VF defects, and 2) our observations that these defects can be subtle and thus 
overlooked even by skilled ophthalmologists.
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4. Abràmoff MD, Lavin PT, Birch M, Shah N, Folk JC. Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices. npj
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5. Berchuck SI, Mukherjee S, Medeiros FA. Estimating Rates of Progression and Predicting Future Visual Fields in Glaucoma Using a Deep Variational Autoencoder. Scientific
Reports 2019 9:1. 2019;9(1):1-12.



Objectives

This study aimed to develop an AI-based tool using a deep learning approach6 to make accurate 
classifications of homonymous VF defects. 

The proposed model in this paper, which we named the Deep Homonymous Classifier (DHC), utilizes 
convolutional layers to extract spatial features from 2D Humphrey Visual Field (HVF) images to perform 
binary classification of either homonymous defect or no homonymous defect.

6. Miotto R, Wang F, Wang S, Jiang X, Dudley JT. Deep learning for healthcare: review, opportunities and challenges. Briefings in Bioinformatics. 2018;19(6):1236-1246.



Methods
• Retrospective, proof-of-concept study using 24-2 Humphrey VFs from controls and patients with homonymous 

defects. HVF tests collected were reviewed by two independent reviewers to ensure the identification of both control 
and homonymous samples was correct

• To extract the visual threshold values from the collected patient PDFs, a custom optical character recognition (OCR) 
program was developed using an open-source library, pytesseract7. A random sample of 50 extracted fields was 
manually inspected and the results showed a 97% recognition accuracy. 

• The total dataset utilized in this study included 1236 VFs, of which 820 were controls and 416 were represented 
homonymous defects. To attempt to train the proposed deep learning model with a balanced dataset, augmentation 
techniques were used to increase the number of homonymous defects examples. This augmentation process 
included random flipping of available homonymous VFs along the vertical or horizontal axis in both eyes to create 
new training examples for the proposed model. In addition, VFs of patients with bitemporal visual defects were 
flipped in one eye along the vertical axis to create a homonymous defect pattern. None of the augmented VFs were 
included in the validation and testing sets of the model and were used strictly for the training of the model. 

7. pytesseract · PyPI. Accessed October 8, 2021. https://pypi.org/project/pytesseract/



.

The DHC model was designed using convolutional neural networks (CNN) to perform binary classification for patients with homonymous defects 
on visual field examination. The proposed model was developed using the PyTorch framework.8 More specifically, each training sample consisted 
of a 10 x 12 pixel, two-channel image, that contained the left and right eye. Extracted visual threshold values from the patient PDFs are padded 
with zeros to create input images for the DHC model. In terms of the network architecture, DHC utilized four convolutional layers to extract 
location invariant features from the input images followed by three dense layers to perform classification. Rectified linear unit functions were 
adopted to incorporate non-linearity within the model. A softmax function was applied to transform the output vector of the last layer into a vector 
of probabilities for binary classification. To stabilize training, batch normalization was implemented to reduce the internal covariate shift of the 
network by rescaling and recentering the layer inputs.9

8. PyTorch. Accessed October 8, 2021. https://pytorch.org/
9. Ioffe S, Szegedy C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. Published online June 1, 2015:448-456. Accessed October 8, 2021. 
https://proceedings.mlr.press/v37/ioffe15.html

DHC model



During training, an adaptive optimizer, 
ADAM, was utilized to update the 
proposed model via backpropagation.10
Other hyperparameters included a batch 
size of 32 and a learning rate of 0.0001. 
To avoid overtraining, early stopping was 
implemented with a patience of 18. In 
terms of the loss function, the recently 
proposed complement cross-entropy 
loss (𝛾 set to -1) was implemented for 
imbalance classification.11 Successful 
convergence was achieved after 3000 
epoch, where an epoch is defined as a 
complete cycle of the training dataset. 

10. Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. 3rd International Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings. Published 
online December 22, 2014. Accessed October 8, 2021. https://arxiv.org/abs/1412.6980v9
11. Kim Y, Lee Y, Jeon M. Imbalanced Image Classification with Complement Cross Entropy. Pattern Recognition Letters. 2020;151:33-40. Accessed October 10, 2021. 
https://arxiv.org/abs/2009.02189v4

https://arxiv.org/abs/1412.6980v9


7-fold validation for four different models was conducted 
to analyze the effects of data augmentation and 
different loss functions on the model’s performance. 
More specifically, we trained a model with 1) no 
augmented data (NAD) with cross entropy (CE) loss, 2) 
augmented data (AD) with cross entropy (CE) loss 3) 
NAD with complement cross entropy (CCE) loss and 4) 
AD with CCE loss. Note, for the models trained with 
augmented data, the augmentation was only applied to 
the training partitions. The accuracy of each model was 
averaged across all folds. At each fold, the test set 
included approximately 176 VFs that contained roughly 
70% controls and 30% homonymous defects (the exact 
numbers of controls and homonymous defects varied as 
the dataset was randomly shuffled for each partition). 

The best model was trained with AD and CCE loss, 
which achieved an average overall accuracy of 87%.

Results



Greater emphasis was placed on recall, 
since the consequence of missing a 
homonymous defect is more catastrophic 
than a false positive prediction. Recall, 
calculated by true positives/ (true 
positives + false negatives) was found to 
be an average of 84%. The calculated F2 
score for this model was found to be 
0.82, with a Cohens Kappa value of 0.74. 

Test confusion matrix for the DHC model with AD 
and CCE Loss, where the accuracies are 
averaged across 7 folds. 



To evaluate DHC’s training robustness, 
repeated k-fold cross-validation was 
conducted up to ten times.

Repeated k-fold cross validation and the 
average accuracies of the proposed model 
trained with AD and CCE Loss are shown. 
Average model accuracies stabilized to 
approximately 87%, 



Discussion
• Automated perimetry is routinely used in ophthalmology clinics for diagnosis and monitoring of ocular

disease, most commonly glaucomatous optic neuropathy. Correspondingly, existing methods for the
interpretation of VFs were developed to detect the presence and progression of glaucomatous field loss;
however, interpretation of VFs is of great importance in the identification of neurological disease.

• The widely used glaucoma hemifield test (GHT) compares symmetry of defined superior and inferior
sectors looking for asymmetry along the horizontal axis.12 As the segregation of nasal and temporal
axons occurs at the optic chiasm, the important axis of symmetry for detecting homonymous defects is
the vertical axis.A vertical analog to the GHT has been proposed, termed the neurological hemifield
test.13 This approach was effective at discriminating VFs from glaucoma patients versus those with
intracranial pathology, though subtle defects were less readily picked up and binasal VF defects in
glaucoma patients could thus be misclassified as neurologic VF defects.

• We opted to use a deep learning algorithm rather than a pre-defined rule above for detecting
homonymous VF defect as deep learning excels in identifying intricate relationships and patterns within
data sets.14

12. Åsman P, Heijl A. Glaucoma Hemifield Test: Automated Visual Field Evaluation. Archives of Ophthalmology. 1992;110(6):812-819. 
13. Boland M v., McCoy AN, Quigley HA, et al. Evaluation of an Algorithm for Detecting Visual Field Defects Due to Chiasmal and Postchiasmal Lesions: The Neurological Hemifield Test. Investigative 
Ophthalmology & Visual Science. 2011;52(11):7959-7965. 
14. Ching T, Himmelstein DS, Beaulieu-Jones BK, et al. Opportunities and obstacles for deep learning in biology and medicine. Journal of The Royal Society Interface. 2018;15(141). 



Discussion
• To the best of our knowledge, this study is the first application of deep learning to the classification of

homonymous defects on automated perimetry

• Imbalanced datasets are a major obstacle for many medical applications of AI technology as it can often
be difficult to acquire ideal datasets due to various reasons, such as difficulty with data collection, poor
uniformity of data, and when dealing with rare diseases. The use of data augmentation and complement
cross-entropy loss addressed the issue of our imbalanced dataset and resulted in a significant increase in
the accuracy of the DHC model.

• Our model is currently limited by the size of the dataset. As with all deep learning models, the proposed
model will improve in generalizability with a larger training set and will be able to further validate the
presented recall and accuracy with a larger testing set. Other limitations of the DHC model are related to
deep learning and include its low explainability or “black box” nature and incorrect feature attribution in
smaller training data sets.

• The model can be further improved by adding recurrent layers to incorporate temporal features during
classification. This would enable it to analyze the progression of vision loss to enhance its ability to detect
early homonymous defects.



Conclusions
• The overall average accuracy achieved by the DHC was 87% with an average recall of 84%

when evaluated with 7-fold cross-validation. The robustness of training was evaluated with
repeated k-fold cross-validation, where the average accuracy also converged to approximately
87%. This is an excellent result as homonymous defects are often subtle and can be difficult to
identify even by a skilled ophthalmologist.

• As a screening tool, this has the potential for meaningful impact on clinical practice as the
consequences of missing these defects can include significant patient morbidity and mortality.

• Patients flagged as having a possible homonymous defect may questioned regarding
neurologic symptoms and risk factors for stroke, and undergo repeat perimetry tests with
neuroimaging if homonymous defect is confirmed


